Loading…

Poisonous Mushroom Detection Using Graph Neural Networks

This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphis...

Full description

Saved in:
Bibliographic Details
Main Authors: Pathirana, D.P.C.H, Rajapaksha, R.M.T.U., Rathnayake, H.M. Samadhi Chathuranga, Sirisena, Kosala, Samarathunga, Udara
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 333
container_issue
container_start_page 328
container_title
container_volume
creator Pathirana, D.P.C.H
Rajapaksha, R.M.T.U.
Rathnayake, H.M. Samadhi Chathuranga
Sirisena, Kosala
Samarathunga, Udara
description This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism Network (GIN), are examined, with a comparison of the Adam and Stochastic Gradient Descent (SGD) optimizers within each. The results underscore GNNs' effectiveness in discerning toxic mushrooms by capturing nuanced pixel relationships, offering a valuable contribution to the fields of biology and toxicology, with practical implications for mushroom toxicity prevention.
doi_str_mv 10.1109/ICAC60630.2023.10417353
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10417353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10417353</ieee_id><sourcerecordid>10417353</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-605368a0ace28fd8d7a346dced25bdc326b3b7f4102102e8e98ef2424327bed23</originalsourceid><addsrcrecordid>eNo1j9tKw0AURUdBsNT8gWB-IPHMnLnlUaJWoV4e7HOZJCd2tM2UmQTx7w2osGG9bDZrM3bFoeQcquvH-qbWoBFKAQJLDpIbVHjCsspUFhWgshz5KVsIi6ZQUshzlqX0AQAoQILUC2Zfg09hCFPKn6a0iyEc8lsaqR19GPJN8sN7voruuMufaYpuP2P8CvEzXbCz3u0TZX9css393Vv9UKxfVrPZuvCcV2OhQaG2DlxLwvad7YxDqbuWOqGarkWhG2xMLzmIOWSpstSLWRWFaeYSLtnl764nou0x-oOL39v_s_gDYz1IoQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Poisonous Mushroom Detection Using Graph Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Pathirana, D.P.C.H ; Rajapaksha, R.M.T.U. ; Rathnayake, H.M. Samadhi Chathuranga ; Sirisena, Kosala ; Samarathunga, Udara</creator><creatorcontrib>Pathirana, D.P.C.H ; Rajapaksha, R.M.T.U. ; Rathnayake, H.M. Samadhi Chathuranga ; Sirisena, Kosala ; Samarathunga, Udara</creatorcontrib><description>This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism Network (GIN), are examined, with a comparison of the Adam and Stochastic Gradient Descent (SGD) optimizers within each. The results underscore GNNs' effectiveness in discerning toxic mushrooms by capturing nuanced pixel relationships, offering a valuable contribution to the fields of biology and toxicology, with practical implications for mushroom toxicity prevention.</description><identifier>EISSN: 2837-5424</identifier><identifier>EISBN: 9798350358131</identifier><identifier>DOI: 10.1109/ICAC60630.2023.10417353</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; Computer architecture ; Convolutional neural networks ; Deep Learning ; Graph neural networks ; Image Processing ; Mushroom classification ; Poisonous Mushroom Detection ; Toxicology</subject><ispartof>2023 5th International Conference on Advancements in Computing (ICAC), 2023, p.328-333</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10417353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10417353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pathirana, D.P.C.H</creatorcontrib><creatorcontrib>Rajapaksha, R.M.T.U.</creatorcontrib><creatorcontrib>Rathnayake, H.M. Samadhi Chathuranga</creatorcontrib><creatorcontrib>Sirisena, Kosala</creatorcontrib><creatorcontrib>Samarathunga, Udara</creatorcontrib><title>Poisonous Mushroom Detection Using Graph Neural Networks</title><title>2023 5th International Conference on Advancements in Computing (ICAC)</title><addtitle>ICAC</addtitle><description>This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism Network (GIN), are examined, with a comparison of the Adam and Stochastic Gradient Descent (SGD) optimizers within each. The results underscore GNNs' effectiveness in discerning toxic mushrooms by capturing nuanced pixel relationships, offering a valuable contribution to the fields of biology and toxicology, with practical implications for mushroom toxicity prevention.</description><subject>Biology</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>Deep Learning</subject><subject>Graph neural networks</subject><subject>Image Processing</subject><subject>Mushroom classification</subject><subject>Poisonous Mushroom Detection</subject><subject>Toxicology</subject><issn>2837-5424</issn><isbn>9798350358131</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9tKw0AURUdBsNT8gWB-IPHMnLnlUaJWoV4e7HOZJCd2tM2UmQTx7w2osGG9bDZrM3bFoeQcquvH-qbWoBFKAQJLDpIbVHjCsspUFhWgshz5KVsIi6ZQUshzlqX0AQAoQILUC2Zfg09hCFPKn6a0iyEc8lsaqR19GPJN8sN7voruuMufaYpuP2P8CvEzXbCz3u0TZX9css393Vv9UKxfVrPZuvCcV2OhQaG2DlxLwvad7YxDqbuWOqGarkWhG2xMLzmIOWSpstSLWRWFaeYSLtnl764nou0x-oOL39v_s_gDYz1IoQ</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Pathirana, D.P.C.H</creator><creator>Rajapaksha, R.M.T.U.</creator><creator>Rathnayake, H.M. Samadhi Chathuranga</creator><creator>Sirisena, Kosala</creator><creator>Samarathunga, Udara</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231207</creationdate><title>Poisonous Mushroom Detection Using Graph Neural Networks</title><author>Pathirana, D.P.C.H ; Rajapaksha, R.M.T.U. ; Rathnayake, H.M. Samadhi Chathuranga ; Sirisena, Kosala ; Samarathunga, Udara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-605368a0ace28fd8d7a346dced25bdc326b3b7f4102102e8e98ef2424327bed23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>Deep Learning</topic><topic>Graph neural networks</topic><topic>Image Processing</topic><topic>Mushroom classification</topic><topic>Poisonous Mushroom Detection</topic><topic>Toxicology</topic><toplevel>online_resources</toplevel><creatorcontrib>Pathirana, D.P.C.H</creatorcontrib><creatorcontrib>Rajapaksha, R.M.T.U.</creatorcontrib><creatorcontrib>Rathnayake, H.M. Samadhi Chathuranga</creatorcontrib><creatorcontrib>Sirisena, Kosala</creatorcontrib><creatorcontrib>Samarathunga, Udara</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pathirana, D.P.C.H</au><au>Rajapaksha, R.M.T.U.</au><au>Rathnayake, H.M. Samadhi Chathuranga</au><au>Sirisena, Kosala</au><au>Samarathunga, Udara</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Poisonous Mushroom Detection Using Graph Neural Networks</atitle><btitle>2023 5th International Conference on Advancements in Computing (ICAC)</btitle><stitle>ICAC</stitle><date>2023-12-07</date><risdate>2023</risdate><spage>328</spage><epage>333</epage><pages>328-333</pages><eissn>2837-5424</eissn><eisbn>9798350358131</eisbn><abstract>This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism Network (GIN), are examined, with a comparison of the Adam and Stochastic Gradient Descent (SGD) optimizers within each. The results underscore GNNs' effectiveness in discerning toxic mushrooms by capturing nuanced pixel relationships, offering a valuable contribution to the fields of biology and toxicology, with practical implications for mushroom toxicity prevention.</abstract><pub>IEEE</pub><doi>10.1109/ICAC60630.2023.10417353</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2837-5424
ispartof 2023 5th International Conference on Advancements in Computing (ICAC), 2023, p.328-333
issn 2837-5424
language eng
recordid cdi_ieee_primary_10417353
source IEEE Xplore All Conference Series
subjects Biology
Computer architecture
Convolutional neural networks
Deep Learning
Graph neural networks
Image Processing
Mushroom classification
Poisonous Mushroom Detection
Toxicology
title Poisonous Mushroom Detection Using Graph Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Poisonous%20Mushroom%20Detection%20Using%20Graph%20Neural%20Networks&rft.btitle=2023%205th%20International%20Conference%20on%20Advancements%20in%20Computing%20(ICAC)&rft.au=Pathirana,%20D.P.C.H&rft.date=2023-12-07&rft.spage=328&rft.epage=333&rft.pages=328-333&rft.eissn=2837-5424&rft_id=info:doi/10.1109/ICAC60630.2023.10417353&rft.eisbn=9798350358131&rft_dat=%3Cieee_CHZPO%3E10417353%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-605368a0ace28fd8d7a346dced25bdc326b3b7f4102102e8e98ef2424327bed23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10417353&rfr_iscdi=true