Loading…
Poisonous Mushroom Detection Using Graph Neural Networks
This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphis...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 333 |
container_issue | |
container_start_page | 328 |
container_title | |
container_volume | |
creator | Pathirana, D.P.C.H Rajapaksha, R.M.T.U. Rathnayake, H.M. Samadhi Chathuranga Sirisena, Kosala Samarathunga, Udara |
description | This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism Network (GIN), are examined, with a comparison of the Adam and Stochastic Gradient Descent (SGD) optimizers within each. The results underscore GNNs' effectiveness in discerning toxic mushrooms by capturing nuanced pixel relationships, offering a valuable contribution to the fields of biology and toxicology, with practical implications for mushroom toxicity prevention. |
doi_str_mv | 10.1109/ICAC60630.2023.10417353 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10417353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10417353</ieee_id><sourcerecordid>10417353</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-605368a0ace28fd8d7a346dced25bdc326b3b7f4102102e8e98ef2424327bed23</originalsourceid><addsrcrecordid>eNo1j9tKw0AURUdBsNT8gWB-IPHMnLnlUaJWoV4e7HOZJCd2tM2UmQTx7w2osGG9bDZrM3bFoeQcquvH-qbWoBFKAQJLDpIbVHjCsspUFhWgshz5KVsIi6ZQUshzlqX0AQAoQILUC2Zfg09hCFPKn6a0iyEc8lsaqR19GPJN8sN7voruuMufaYpuP2P8CvEzXbCz3u0TZX9css393Vv9UKxfVrPZuvCcV2OhQaG2DlxLwvad7YxDqbuWOqGarkWhG2xMLzmIOWSpstSLWRWFaeYSLtnl764nou0x-oOL39v_s_gDYz1IoQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Poisonous Mushroom Detection Using Graph Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Pathirana, D.P.C.H ; Rajapaksha, R.M.T.U. ; Rathnayake, H.M. Samadhi Chathuranga ; Sirisena, Kosala ; Samarathunga, Udara</creator><creatorcontrib>Pathirana, D.P.C.H ; Rajapaksha, R.M.T.U. ; Rathnayake, H.M. Samadhi Chathuranga ; Sirisena, Kosala ; Samarathunga, Udara</creatorcontrib><description>This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism Network (GIN), are examined, with a comparison of the Adam and Stochastic Gradient Descent (SGD) optimizers within each. The results underscore GNNs' effectiveness in discerning toxic mushrooms by capturing nuanced pixel relationships, offering a valuable contribution to the fields of biology and toxicology, with practical implications for mushroom toxicity prevention.</description><identifier>EISSN: 2837-5424</identifier><identifier>EISBN: 9798350358131</identifier><identifier>DOI: 10.1109/ICAC60630.2023.10417353</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; Computer architecture ; Convolutional neural networks ; Deep Learning ; Graph neural networks ; Image Processing ; Mushroom classification ; Poisonous Mushroom Detection ; Toxicology</subject><ispartof>2023 5th International Conference on Advancements in Computing (ICAC), 2023, p.328-333</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10417353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10417353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pathirana, D.P.C.H</creatorcontrib><creatorcontrib>Rajapaksha, R.M.T.U.</creatorcontrib><creatorcontrib>Rathnayake, H.M. Samadhi Chathuranga</creatorcontrib><creatorcontrib>Sirisena, Kosala</creatorcontrib><creatorcontrib>Samarathunga, Udara</creatorcontrib><title>Poisonous Mushroom Detection Using Graph Neural Networks</title><title>2023 5th International Conference on Advancements in Computing (ICAC)</title><addtitle>ICAC</addtitle><description>This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism Network (GIN), are examined, with a comparison of the Adam and Stochastic Gradient Descent (SGD) optimizers within each. The results underscore GNNs' effectiveness in discerning toxic mushrooms by capturing nuanced pixel relationships, offering a valuable contribution to the fields of biology and toxicology, with practical implications for mushroom toxicity prevention.</description><subject>Biology</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>Deep Learning</subject><subject>Graph neural networks</subject><subject>Image Processing</subject><subject>Mushroom classification</subject><subject>Poisonous Mushroom Detection</subject><subject>Toxicology</subject><issn>2837-5424</issn><isbn>9798350358131</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9tKw0AURUdBsNT8gWB-IPHMnLnlUaJWoV4e7HOZJCd2tM2UmQTx7w2osGG9bDZrM3bFoeQcquvH-qbWoBFKAQJLDpIbVHjCsspUFhWgshz5KVsIi6ZQUshzlqX0AQAoQILUC2Zfg09hCFPKn6a0iyEc8lsaqR19GPJN8sN7voruuMufaYpuP2P8CvEzXbCz3u0TZX9css393Vv9UKxfVrPZuvCcV2OhQaG2DlxLwvad7YxDqbuWOqGarkWhG2xMLzmIOWSpstSLWRWFaeYSLtnl764nou0x-oOL39v_s_gDYz1IoQ</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Pathirana, D.P.C.H</creator><creator>Rajapaksha, R.M.T.U.</creator><creator>Rathnayake, H.M. Samadhi Chathuranga</creator><creator>Sirisena, Kosala</creator><creator>Samarathunga, Udara</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231207</creationdate><title>Poisonous Mushroom Detection Using Graph Neural Networks</title><author>Pathirana, D.P.C.H ; Rajapaksha, R.M.T.U. ; Rathnayake, H.M. Samadhi Chathuranga ; Sirisena, Kosala ; Samarathunga, Udara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-605368a0ace28fd8d7a346dced25bdc326b3b7f4102102e8e98ef2424327bed23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>Deep Learning</topic><topic>Graph neural networks</topic><topic>Image Processing</topic><topic>Mushroom classification</topic><topic>Poisonous Mushroom Detection</topic><topic>Toxicology</topic><toplevel>online_resources</toplevel><creatorcontrib>Pathirana, D.P.C.H</creatorcontrib><creatorcontrib>Rajapaksha, R.M.T.U.</creatorcontrib><creatorcontrib>Rathnayake, H.M. Samadhi Chathuranga</creatorcontrib><creatorcontrib>Sirisena, Kosala</creatorcontrib><creatorcontrib>Samarathunga, Udara</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pathirana, D.P.C.H</au><au>Rajapaksha, R.M.T.U.</au><au>Rathnayake, H.M. Samadhi Chathuranga</au><au>Sirisena, Kosala</au><au>Samarathunga, Udara</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Poisonous Mushroom Detection Using Graph Neural Networks</atitle><btitle>2023 5th International Conference on Advancements in Computing (ICAC)</btitle><stitle>ICAC</stitle><date>2023-12-07</date><risdate>2023</risdate><spage>328</spage><epage>333</epage><pages>328-333</pages><eissn>2837-5424</eissn><eisbn>9798350358131</eisbn><abstract>This study delves into the use of Graph Neural Networks (GNNs) for the classification of poisonous and edible mushrooms based on image data, aiming to address the limitations of manual identification methods. Three GNN architectures, Graph Convolutional Network (GCN), GraphSAGE, and Graph Isomorphism Network (GIN), are examined, with a comparison of the Adam and Stochastic Gradient Descent (SGD) optimizers within each. The results underscore GNNs' effectiveness in discerning toxic mushrooms by capturing nuanced pixel relationships, offering a valuable contribution to the fields of biology and toxicology, with practical implications for mushroom toxicity prevention.</abstract><pub>IEEE</pub><doi>10.1109/ICAC60630.2023.10417353</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2837-5424 |
ispartof | 2023 5th International Conference on Advancements in Computing (ICAC), 2023, p.328-333 |
issn | 2837-5424 |
language | eng |
recordid | cdi_ieee_primary_10417353 |
source | IEEE Xplore All Conference Series |
subjects | Biology Computer architecture Convolutional neural networks Deep Learning Graph neural networks Image Processing Mushroom classification Poisonous Mushroom Detection Toxicology |
title | Poisonous Mushroom Detection Using Graph Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Poisonous%20Mushroom%20Detection%20Using%20Graph%20Neural%20Networks&rft.btitle=2023%205th%20International%20Conference%20on%20Advancements%20in%20Computing%20(ICAC)&rft.au=Pathirana,%20D.P.C.H&rft.date=2023-12-07&rft.spage=328&rft.epage=333&rft.pages=328-333&rft.eissn=2837-5424&rft_id=info:doi/10.1109/ICAC60630.2023.10417353&rft.eisbn=9798350358131&rft_dat=%3Cieee_CHZPO%3E10417353%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-605368a0ace28fd8d7a346dced25bdc326b3b7f4102102e8e98ef2424327bed23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10417353&rfr_iscdi=true |