Loading…
Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments
Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising tec...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Guaman-Rivera, Robert Menendez, Oswaldo Arevalo-Ramirez, Tito Aro, Katherine Prado, Alvaro Garcia-Alvarado, Rodrigo Auat-Cheein, Fernando |
description | Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%. |
doi_str_mv | 10.1109/CHILECON60335.2023.10418631 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10418631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418631</ieee_id><sourcerecordid>10418631</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-2bd7cebbd3b4417fa47d68cef0931734ea07e14a86f98b675fb8680e3c8212cc3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhKMgWLT_wEPA89Yk724-jmVbbaG0Fz2XbJpAtJtIkq3039sPPQ0MDzPDIPRMyYRSol7axXI1bzdrTgCaCSMMJpTUVHKgN2ishJLQEOCqAbhFIyaBVbQBcY_GOX8SQoAKoWgzQnGas825t6Hg6HAbwyHuh-Jj0Hu8tkO6SPmJ6StjFxM-8wXPbLHmTGEf8OwYdO8Nng4l9vrinnJyScMVmYeDTzGcO_IjunN6n-34Tx_Qx-v8vV1Uq83bsp2uKk-pKhXrdsLYrttBV9dUOF2LHZfGOqJO06G2mghLay25U7LjonGd5JJYMJJRZgw8oKdrrrfWbr-T73U6bv8_gl9tml-K</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments</title><source>IEEE Xplore All Conference Series</source><creator>Guaman-Rivera, Robert ; Menendez, Oswaldo ; Arevalo-Ramirez, Tito ; Aro, Katherine ; Prado, Alvaro ; Garcia-Alvarado, Rodrigo ; Auat-Cheein, Fernando</creator><creatorcontrib>Guaman-Rivera, Robert ; Menendez, Oswaldo ; Arevalo-Ramirez, Tito ; Aro, Katherine ; Prado, Alvaro ; Garcia-Alvarado, Rodrigo ; Auat-Cheein, Fernando</creatorcontrib><description>Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%.</description><identifier>EISSN: 2832-1537</identifier><identifier>EISBN: 9798350369533</identifier><identifier>DOI: 10.1109/CHILECON60335.2023.10418631</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D printing ; Automation in construction ; convolutional neural network ; Convolutional neural networks ; Fifth Industrial Revolution ; Heuristic algorithms ; robotics ; Safety ; Service robots ; Three-dimensional printing ; YOLO</subject><ispartof>2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10418631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guaman-Rivera, Robert</creatorcontrib><creatorcontrib>Menendez, Oswaldo</creatorcontrib><creatorcontrib>Arevalo-Ramirez, Tito</creatorcontrib><creatorcontrib>Aro, Katherine</creatorcontrib><creatorcontrib>Prado, Alvaro</creatorcontrib><creatorcontrib>Garcia-Alvarado, Rodrigo</creatorcontrib><creatorcontrib>Auat-Cheein, Fernando</creatorcontrib><title>Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments</title><title>2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)</title><addtitle>CHILECON</addtitle><description>Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%.</description><subject>3D printing</subject><subject>Automation in construction</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Fifth Industrial Revolution</subject><subject>Heuristic algorithms</subject><subject>robotics</subject><subject>Safety</subject><subject>Service robots</subject><subject>Three-dimensional printing</subject><subject>YOLO</subject><issn>2832-1537</issn><isbn>9798350369533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1LAzEYhKMgWLT_wEPA89Yk724-jmVbbaG0Fz2XbJpAtJtIkq3039sPPQ0MDzPDIPRMyYRSol7axXI1bzdrTgCaCSMMJpTUVHKgN2ishJLQEOCqAbhFIyaBVbQBcY_GOX8SQoAKoWgzQnGas825t6Hg6HAbwyHuh-Jj0Hu8tkO6SPmJ6StjFxM-8wXPbLHmTGEf8OwYdO8Nng4l9vrinnJyScMVmYeDTzGcO_IjunN6n-34Tx_Qx-v8vV1Uq83bsp2uKk-pKhXrdsLYrttBV9dUOF2LHZfGOqJO06G2mghLay25U7LjonGd5JJYMJJRZgw8oKdrrrfWbr-T73U6bv8_gl9tml-K</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Guaman-Rivera, Robert</creator><creator>Menendez, Oswaldo</creator><creator>Arevalo-Ramirez, Tito</creator><creator>Aro, Katherine</creator><creator>Prado, Alvaro</creator><creator>Garcia-Alvarado, Rodrigo</creator><creator>Auat-Cheein, Fernando</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231205</creationdate><title>Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments</title><author>Guaman-Rivera, Robert ; Menendez, Oswaldo ; Arevalo-Ramirez, Tito ; Aro, Katherine ; Prado, Alvaro ; Garcia-Alvarado, Rodrigo ; Auat-Cheein, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-2bd7cebbd3b4417fa47d68cef0931734ea07e14a86f98b675fb8680e3c8212cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Automation in construction</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Fifth Industrial Revolution</topic><topic>Heuristic algorithms</topic><topic>robotics</topic><topic>Safety</topic><topic>Service robots</topic><topic>Three-dimensional printing</topic><topic>YOLO</topic><toplevel>online_resources</toplevel><creatorcontrib>Guaman-Rivera, Robert</creatorcontrib><creatorcontrib>Menendez, Oswaldo</creatorcontrib><creatorcontrib>Arevalo-Ramirez, Tito</creatorcontrib><creatorcontrib>Aro, Katherine</creatorcontrib><creatorcontrib>Prado, Alvaro</creatorcontrib><creatorcontrib>Garcia-Alvarado, Rodrigo</creatorcontrib><creatorcontrib>Auat-Cheein, Fernando</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guaman-Rivera, Robert</au><au>Menendez, Oswaldo</au><au>Arevalo-Ramirez, Tito</au><au>Aro, Katherine</au><au>Prado, Alvaro</au><au>Garcia-Alvarado, Rodrigo</au><au>Auat-Cheein, Fernando</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments</atitle><btitle>2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)</btitle><stitle>CHILECON</stitle><date>2023-12-05</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2832-1537</eissn><eisbn>9798350369533</eisbn><abstract>Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%.</abstract><pub>IEEE</pub><doi>10.1109/CHILECON60335.2023.10418631</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2832-1537 |
ispartof | 2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2023, p.1-6 |
issn | 2832-1537 |
language | eng |
recordid | cdi_ieee_primary_10418631 |
source | IEEE Xplore All Conference Series |
subjects | 3D printing Automation in construction convolutional neural network Convolutional neural networks Fifth Industrial Revolution Heuristic algorithms robotics Safety Service robots Three-dimensional printing YOLO |
title | Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessment%20of%20Convolutional%20Neural%20Networks%20for%20Asset%20Detection%20in%20Dynamic%20Automation%20Construction%20Environments&rft.btitle=2023%20IEEE%20CHILEAN%20Conference%20on%20Electrical,%20Electronics%20Engineering,%20Information%20and%20Communication%20Technologies%20(CHILECON)&rft.au=Guaman-Rivera,%20Robert&rft.date=2023-12-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2832-1537&rft_id=info:doi/10.1109/CHILECON60335.2023.10418631&rft.eisbn=9798350369533&rft_dat=%3Cieee_CHZPO%3E10418631%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-2bd7cebbd3b4417fa47d68cef0931734ea07e14a86f98b675fb8680e3c8212cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10418631&rfr_iscdi=true |