Loading…

Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments

Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising tec...

Full description

Saved in:
Bibliographic Details
Main Authors: Guaman-Rivera, Robert, Menendez, Oswaldo, Arevalo-Ramirez, Tito, Aro, Katherine, Prado, Alvaro, Garcia-Alvarado, Rodrigo, Auat-Cheein, Fernando
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Guaman-Rivera, Robert
Menendez, Oswaldo
Arevalo-Ramirez, Tito
Aro, Katherine
Prado, Alvaro
Garcia-Alvarado, Rodrigo
Auat-Cheein, Fernando
description Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%.
doi_str_mv 10.1109/CHILECON60335.2023.10418631
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10418631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418631</ieee_id><sourcerecordid>10418631</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-2bd7cebbd3b4417fa47d68cef0931734ea07e14a86f98b675fb8680e3c8212cc3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhKMgWLT_wEPA89Yk724-jmVbbaG0Fz2XbJpAtJtIkq3039sPPQ0MDzPDIPRMyYRSol7axXI1bzdrTgCaCSMMJpTUVHKgN2ishJLQEOCqAbhFIyaBVbQBcY_GOX8SQoAKoWgzQnGas825t6Hg6HAbwyHuh-Jj0Hu8tkO6SPmJ6StjFxM-8wXPbLHmTGEf8OwYdO8Nng4l9vrinnJyScMVmYeDTzGcO_IjunN6n-34Tx_Qx-v8vV1Uq83bsp2uKk-pKhXrdsLYrttBV9dUOF2LHZfGOqJO06G2mghLay25U7LjonGd5JJYMJJRZgw8oKdrrrfWbr-T73U6bv8_gl9tml-K</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments</title><source>IEEE Xplore All Conference Series</source><creator>Guaman-Rivera, Robert ; Menendez, Oswaldo ; Arevalo-Ramirez, Tito ; Aro, Katherine ; Prado, Alvaro ; Garcia-Alvarado, Rodrigo ; Auat-Cheein, Fernando</creator><creatorcontrib>Guaman-Rivera, Robert ; Menendez, Oswaldo ; Arevalo-Ramirez, Tito ; Aro, Katherine ; Prado, Alvaro ; Garcia-Alvarado, Rodrigo ; Auat-Cheein, Fernando</creatorcontrib><description>Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%.</description><identifier>EISSN: 2832-1537</identifier><identifier>EISBN: 9798350369533</identifier><identifier>DOI: 10.1109/CHILECON60335.2023.10418631</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D printing ; Automation in construction ; convolutional neural network ; Convolutional neural networks ; Fifth Industrial Revolution ; Heuristic algorithms ; robotics ; Safety ; Service robots ; Three-dimensional printing ; YOLO</subject><ispartof>2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10418631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guaman-Rivera, Robert</creatorcontrib><creatorcontrib>Menendez, Oswaldo</creatorcontrib><creatorcontrib>Arevalo-Ramirez, Tito</creatorcontrib><creatorcontrib>Aro, Katherine</creatorcontrib><creatorcontrib>Prado, Alvaro</creatorcontrib><creatorcontrib>Garcia-Alvarado, Rodrigo</creatorcontrib><creatorcontrib>Auat-Cheein, Fernando</creatorcontrib><title>Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments</title><title>2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)</title><addtitle>CHILECON</addtitle><description>Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%.</description><subject>3D printing</subject><subject>Automation in construction</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Fifth Industrial Revolution</subject><subject>Heuristic algorithms</subject><subject>robotics</subject><subject>Safety</subject><subject>Service robots</subject><subject>Three-dimensional printing</subject><subject>YOLO</subject><issn>2832-1537</issn><isbn>9798350369533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1LAzEYhKMgWLT_wEPA89Yk724-jmVbbaG0Fz2XbJpAtJtIkq3039sPPQ0MDzPDIPRMyYRSol7axXI1bzdrTgCaCSMMJpTUVHKgN2ishJLQEOCqAbhFIyaBVbQBcY_GOX8SQoAKoWgzQnGas825t6Hg6HAbwyHuh-Jj0Hu8tkO6SPmJ6StjFxM-8wXPbLHmTGEf8OwYdO8Nng4l9vrinnJyScMVmYeDTzGcO_IjunN6n-34Tx_Qx-v8vV1Uq83bsp2uKk-pKhXrdsLYrttBV9dUOF2LHZfGOqJO06G2mghLay25U7LjonGd5JJYMJJRZgw8oKdrrrfWbr-T73U6bv8_gl9tml-K</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Guaman-Rivera, Robert</creator><creator>Menendez, Oswaldo</creator><creator>Arevalo-Ramirez, Tito</creator><creator>Aro, Katherine</creator><creator>Prado, Alvaro</creator><creator>Garcia-Alvarado, Rodrigo</creator><creator>Auat-Cheein, Fernando</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231205</creationdate><title>Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments</title><author>Guaman-Rivera, Robert ; Menendez, Oswaldo ; Arevalo-Ramirez, Tito ; Aro, Katherine ; Prado, Alvaro ; Garcia-Alvarado, Rodrigo ; Auat-Cheein, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-2bd7cebbd3b4417fa47d68cef0931734ea07e14a86f98b675fb8680e3c8212cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Automation in construction</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Fifth Industrial Revolution</topic><topic>Heuristic algorithms</topic><topic>robotics</topic><topic>Safety</topic><topic>Service robots</topic><topic>Three-dimensional printing</topic><topic>YOLO</topic><toplevel>online_resources</toplevel><creatorcontrib>Guaman-Rivera, Robert</creatorcontrib><creatorcontrib>Menendez, Oswaldo</creatorcontrib><creatorcontrib>Arevalo-Ramirez, Tito</creatorcontrib><creatorcontrib>Aro, Katherine</creatorcontrib><creatorcontrib>Prado, Alvaro</creatorcontrib><creatorcontrib>Garcia-Alvarado, Rodrigo</creatorcontrib><creatorcontrib>Auat-Cheein, Fernando</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guaman-Rivera, Robert</au><au>Menendez, Oswaldo</au><au>Arevalo-Ramirez, Tito</au><au>Aro, Katherine</au><au>Prado, Alvaro</au><au>Garcia-Alvarado, Rodrigo</au><au>Auat-Cheein, Fernando</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments</atitle><btitle>2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)</btitle><stitle>CHILECON</stitle><date>2023-12-05</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2832-1537</eissn><eisbn>9798350369533</eisbn><abstract>Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%.</abstract><pub>IEEE</pub><doi>10.1109/CHILECON60335.2023.10418631</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2832-1537
ispartof 2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2023, p.1-6
issn 2832-1537
language eng
recordid cdi_ieee_primary_10418631
source IEEE Xplore All Conference Series
subjects 3D printing
Automation in construction
convolutional neural network
Convolutional neural networks
Fifth Industrial Revolution
Heuristic algorithms
robotics
Safety
Service robots
Three-dimensional printing
YOLO
title Assessment of Convolutional Neural Networks for Asset Detection in Dynamic Automation Construction Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessment%20of%20Convolutional%20Neural%20Networks%20for%20Asset%20Detection%20in%20Dynamic%20Automation%20Construction%20Environments&rft.btitle=2023%20IEEE%20CHILEAN%20Conference%20on%20Electrical,%20Electronics%20Engineering,%20Information%20and%20Communication%20Technologies%20(CHILECON)&rft.au=Guaman-Rivera,%20Robert&rft.date=2023-12-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2832-1537&rft_id=info:doi/10.1109/CHILECON60335.2023.10418631&rft.eisbn=9798350369533&rft_dat=%3Cieee_CHZPO%3E10418631%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-2bd7cebbd3b4417fa47d68cef0931734ea07e14a86f98b675fb8680e3c8212cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10418631&rfr_iscdi=true