Loading…
Traffic Accident Risk Forecasting using Contextual Vision Transformers with Static Map Generation and Coarse-Fine-Coarse Transformers
We propose an enhancement to our previously proposed novel model called Contextual Vision Transformer (ViT) to address the problem of traffic accident risk forecasting. This framework combines spatial and temporal information using a data-driven approach. By treating the problem as a computer vision...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4769 |
container_issue | |
container_start_page | 4762 |
container_title | |
container_volume | |
creator | Grigorev, Artur Saleh, Khaled Mihaita, Adriana-Simona |
description | We propose an enhancement to our previously proposed novel model called Contextual Vision Transformer (ViT) to address the problem of traffic accident risk forecasting. This framework combines spatial and temporal information using a data-driven approach. By treating the problem as a computer vision task, we can predict traffic accident risk as the next frame in a video sequence. Specificaly, we extend the ViT network with a Static Map generation (named XViT) for even better results on the Chicago dataset. Furthermore, we propose a Coarse-Fine-Coarse transformer architecture as an alternative approach to enhance traffic accident risk prediction. |
doi_str_mv | 10.1109/ITSC57777.2023.10421915 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10421915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10421915</ieee_id><sourcerecordid>10421915</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-50d5b6127d0c3797a0f355783b03db090b1d8810c45f36e4dde545f5305f47ea3</originalsourceid><addsrcrecordid>eNpVkNFKAzEQRaMgWGr_QDA_sHWSbDabx7LYWqgItvpasptZjbZpSVLUD_C_jVQfvA8zd2DOfbiEXDEYMwb6er5aNlJljTlwMWZQcqaZPCEjrXQtJAity4qfkgFnUhQATJ2TUYyvkCV4XQkYkK9VMH3vOjrpOmfRJ_rg4hud7gJ2Jibnn-kh_sxm5xN-pIPZ0CcX3c7TTPrY78IWQ6TvLr3QZTIpR92ZPZ2hx5Cv_Ge8zbQJEYup81gc_T_8gpz1ZhNx9LuH5HF6s2pui8X9bN5MFoXjUKZCgpVtxbiy0AmllYFeSKlq0YKwLWhoma1rBl0pe1FhaS3KbKUA2ZcKjRiSy2OuQ8T1PritCZ_rv-bEN5c1ZKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Traffic Accident Risk Forecasting using Contextual Vision Transformers with Static Map Generation and Coarse-Fine-Coarse Transformers</title><source>IEEE Xplore All Conference Series</source><creator>Grigorev, Artur ; Saleh, Khaled ; Mihaita, Adriana-Simona</creator><creatorcontrib>Grigorev, Artur ; Saleh, Khaled ; Mihaita, Adriana-Simona</creatorcontrib><description>We propose an enhancement to our previously proposed novel model called Contextual Vision Transformer (ViT) to address the problem of traffic accident risk forecasting. This framework combines spatial and temporal information using a data-driven approach. By treating the problem as a computer vision task, we can predict traffic accident risk as the next frame in a video sequence. Specificaly, we extend the ViT network with a Static Map generation (named XViT) for even better results on the Chicago dataset. Furthermore, we propose a Coarse-Fine-Coarse transformer architecture as an alternative approach to enhance traffic accident risk prediction.</description><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9798350399462</identifier><identifier>DOI: 10.1109/ITSC57777.2023.10421915</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accidents ; Context modeling ; deep learning ; Forecasting ; Predictive models ; risk prediction ; Task analysis ; traffic accident risk ; Transformers ; vision transformers ; Visualization</subject><ispartof>2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023, p.4762-4769</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10421915$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10421915$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Grigorev, Artur</creatorcontrib><creatorcontrib>Saleh, Khaled</creatorcontrib><creatorcontrib>Mihaita, Adriana-Simona</creatorcontrib><title>Traffic Accident Risk Forecasting using Contextual Vision Transformers with Static Map Generation and Coarse-Fine-Coarse Transformers</title><title>2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)</title><addtitle>ITSC</addtitle><description>We propose an enhancement to our previously proposed novel model called Contextual Vision Transformer (ViT) to address the problem of traffic accident risk forecasting. This framework combines spatial and temporal information using a data-driven approach. By treating the problem as a computer vision task, we can predict traffic accident risk as the next frame in a video sequence. Specificaly, we extend the ViT network with a Static Map generation (named XViT) for even better results on the Chicago dataset. Furthermore, we propose a Coarse-Fine-Coarse transformer architecture as an alternative approach to enhance traffic accident risk prediction.</description><subject>Accidents</subject><subject>Context modeling</subject><subject>deep learning</subject><subject>Forecasting</subject><subject>Predictive models</subject><subject>risk prediction</subject><subject>Task analysis</subject><subject>traffic accident risk</subject><subject>Transformers</subject><subject>vision transformers</subject><subject>Visualization</subject><issn>2153-0017</issn><isbn>9798350399462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkNFKAzEQRaMgWGr_QDA_sHWSbDabx7LYWqgItvpasptZjbZpSVLUD_C_jVQfvA8zd2DOfbiEXDEYMwb6er5aNlJljTlwMWZQcqaZPCEjrXQtJAity4qfkgFnUhQATJ2TUYyvkCV4XQkYkK9VMH3vOjrpOmfRJ_rg4hud7gJ2Jibnn-kh_sxm5xN-pIPZ0CcX3c7TTPrY78IWQ6TvLr3QZTIpR92ZPZ2hx5Cv_Ge8zbQJEYup81gc_T_8gpz1ZhNx9LuH5HF6s2pui8X9bN5MFoXjUKZCgpVtxbiy0AmllYFeSKlq0YKwLWhoma1rBl0pe1FhaS3KbKUA2ZcKjRiSy2OuQ8T1PritCZ_rv-bEN5c1ZKw</recordid><startdate>20230924</startdate><enddate>20230924</enddate><creator>Grigorev, Artur</creator><creator>Saleh, Khaled</creator><creator>Mihaita, Adriana-Simona</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230924</creationdate><title>Traffic Accident Risk Forecasting using Contextual Vision Transformers with Static Map Generation and Coarse-Fine-Coarse Transformers</title><author>Grigorev, Artur ; Saleh, Khaled ; Mihaita, Adriana-Simona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-50d5b6127d0c3797a0f355783b03db090b1d8810c45f36e4dde545f5305f47ea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accidents</topic><topic>Context modeling</topic><topic>deep learning</topic><topic>Forecasting</topic><topic>Predictive models</topic><topic>risk prediction</topic><topic>Task analysis</topic><topic>traffic accident risk</topic><topic>Transformers</topic><topic>vision transformers</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Grigorev, Artur</creatorcontrib><creatorcontrib>Saleh, Khaled</creatorcontrib><creatorcontrib>Mihaita, Adriana-Simona</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grigorev, Artur</au><au>Saleh, Khaled</au><au>Mihaita, Adriana-Simona</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Traffic Accident Risk Forecasting using Contextual Vision Transformers with Static Map Generation and Coarse-Fine-Coarse Transformers</atitle><btitle>2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)</btitle><stitle>ITSC</stitle><date>2023-09-24</date><risdate>2023</risdate><spage>4762</spage><epage>4769</epage><pages>4762-4769</pages><eissn>2153-0017</eissn><eisbn>9798350399462</eisbn><abstract>We propose an enhancement to our previously proposed novel model called Contextual Vision Transformer (ViT) to address the problem of traffic accident risk forecasting. This framework combines spatial and temporal information using a data-driven approach. By treating the problem as a computer vision task, we can predict traffic accident risk as the next frame in a video sequence. Specificaly, we extend the ViT network with a Static Map generation (named XViT) for even better results on the Chicago dataset. Furthermore, we propose a Coarse-Fine-Coarse transformer architecture as an alternative approach to enhance traffic accident risk prediction.</abstract><pub>IEEE</pub><doi>10.1109/ITSC57777.2023.10421915</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0017 |
ispartof | 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023, p.4762-4769 |
issn | 2153-0017 |
language | eng |
recordid | cdi_ieee_primary_10421915 |
source | IEEE Xplore All Conference Series |
subjects | Accidents Context modeling deep learning Forecasting Predictive models risk prediction Task analysis traffic accident risk Transformers vision transformers Visualization |
title | Traffic Accident Risk Forecasting using Contextual Vision Transformers with Static Map Generation and Coarse-Fine-Coarse Transformers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Traffic%20Accident%20Risk%20Forecasting%20using%20Contextual%20Vision%20Transformers%20with%20Static%20Map%20Generation%20and%20Coarse-Fine-Coarse%20Transformers&rft.btitle=2023%20IEEE%2026th%20International%20Conference%20on%20Intelligent%20Transportation%20Systems%20(ITSC)&rft.au=Grigorev,%20Artur&rft.date=2023-09-24&rft.spage=4762&rft.epage=4769&rft.pages=4762-4769&rft.eissn=2153-0017&rft_id=info:doi/10.1109/ITSC57777.2023.10421915&rft.eisbn=9798350399462&rft_dat=%3Cieee_CHZPO%3E10421915%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-50d5b6127d0c3797a0f355783b03db090b1d8810c45f36e4dde545f5305f47ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10421915&rfr_iscdi=true |