Loading…

Multi-scenario Route Choice Modeling Based on Random Parameters Multinomial Logit Model with Heterogeneity in Means and Variance

Travel demand management (TDM) strategies have been widely adopted to tackle the persisting traffic congestion in metropolitan areas [1]. To evaluate the effects of TDM strategies, it is imperative to disentangle the dynamics of individual travel behaviors, usually through developing route choice mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan, Quan, Pan, Ruixu, Deng, Jihao, Li, Tianhao, Chen, Xiaohong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2783
container_issue
container_start_page 2776
container_title
container_volume
creator Yuan, Quan
Pan, Ruixu
Deng, Jihao
Li, Tianhao
Chen, Xiaohong
description Travel demand management (TDM) strategies have been widely adopted to tackle the persisting traffic congestion in metropolitan areas [1]. To evaluate the effects of TDM strategies, it is imperative to disentangle the dynamics of individual travel behaviors, usually through developing route choice models. Based on long-term trajectory data from passenger vehicles, this study investigates individual route characteristics, travel features, and traveler attributes, to explore route choice behaviors for respectively morning and evening travel during weekdays. By categorizing the choice set of each trip into five alternatives based on different routing strategies, we propose a new route choice model that accounts for route overlap and incorporates random parameter heterogeneity in means and variances. This model demonstrates superior fitting performance compared to Path-Size Multinomial Logit and Mixed Logit models. Furthermore, our findings reveal temporal disparities in route choice behavior, providing valuable insights for the implementation of personalized measures that aim at guiding travelers to change their departure time or modify their route choices.
doi_str_mv 10.1109/ITSC57777.2023.10422380
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10422380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10422380</ieee_id><sourcerecordid>10422380</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-2d26f334858004d6f69b66864a1a8f631f4d141af9dcec6194732776d77213b43</originalsourceid><addsrcrecordid>eNo1kM9KAzEYxKMgWLRvIPi9wNb822Rz1EVtoUWp1WtJN9-2kd1EdlOkNx_d1epc5jK_GRhCrhmdMEbNzWz1UuZ60IRTLiaMSs5FQU_I2GhTiJwKY6Tip2TEWS4ySpk-J-O-f6eDBC-UoCPytdg3yWd9hcF2PsIy7hNCuYu-QlhEh40PW7izPTqIAZY2uNjCs-1siwm7Hn75EFtvG5jHrU9HCj592sH0JxO3GNCnA_gAC7Shh6EE3oY5Gyq8JGe1bXoc__kFeX24X5XTbP70OCtv55nnVKaMO65qIWSRF5RKp2plNkoVSlpmi1oJVkvHJLO1cRVWihmpBddaOa05ExspLsjVsdcj4vqj863tDuv_08Q3vuhhmw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-scenario Route Choice Modeling Based on Random Parameters Multinomial Logit Model with Heterogeneity in Means and Variance</title><source>IEEE Xplore All Conference Series</source><creator>Yuan, Quan ; Pan, Ruixu ; Deng, Jihao ; Li, Tianhao ; Chen, Xiaohong</creator><creatorcontrib>Yuan, Quan ; Pan, Ruixu ; Deng, Jihao ; Li, Tianhao ; Chen, Xiaohong</creatorcontrib><description>Travel demand management (TDM) strategies have been widely adopted to tackle the persisting traffic congestion in metropolitan areas [1]. To evaluate the effects of TDM strategies, it is imperative to disentangle the dynamics of individual travel behaviors, usually through developing route choice models. Based on long-term trajectory data from passenger vehicles, this study investigates individual route characteristics, travel features, and traveler attributes, to explore route choice behaviors for respectively morning and evening travel during weekdays. By categorizing the choice set of each trip into five alternatives based on different routing strategies, we propose a new route choice model that accounts for route overlap and incorporates random parameter heterogeneity in means and variances. This model demonstrates superior fitting performance compared to Path-Size Multinomial Logit and Mixed Logit models. Furthermore, our findings reveal temporal disparities in route choice behavior, providing valuable insights for the implementation of personalized measures that aim at guiding travelers to change their departure time or modify their route choices.</description><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9798350399462</identifier><identifier>DOI: 10.1109/ITSC57777.2023.10422380</identifier><language>eng</language><publisher>IEEE</publisher><subject>Behavioral sciences ; Data models ; Logistic regression ; morning and evening travel ; random parameter heterogeneity ; Route choice model ; Time division multiplexing ; Time measurement ; Trajectory ; Urban areas</subject><ispartof>2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023, p.2776-2783</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10422380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10422380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>Pan, Ruixu</creatorcontrib><creatorcontrib>Deng, Jihao</creatorcontrib><creatorcontrib>Li, Tianhao</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><title>Multi-scenario Route Choice Modeling Based on Random Parameters Multinomial Logit Model with Heterogeneity in Means and Variance</title><title>2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)</title><addtitle>ITSC</addtitle><description>Travel demand management (TDM) strategies have been widely adopted to tackle the persisting traffic congestion in metropolitan areas [1]. To evaluate the effects of TDM strategies, it is imperative to disentangle the dynamics of individual travel behaviors, usually through developing route choice models. Based on long-term trajectory data from passenger vehicles, this study investigates individual route characteristics, travel features, and traveler attributes, to explore route choice behaviors for respectively morning and evening travel during weekdays. By categorizing the choice set of each trip into five alternatives based on different routing strategies, we propose a new route choice model that accounts for route overlap and incorporates random parameter heterogeneity in means and variances. This model demonstrates superior fitting performance compared to Path-Size Multinomial Logit and Mixed Logit models. Furthermore, our findings reveal temporal disparities in route choice behavior, providing valuable insights for the implementation of personalized measures that aim at guiding travelers to change their departure time or modify their route choices.</description><subject>Behavioral sciences</subject><subject>Data models</subject><subject>Logistic regression</subject><subject>morning and evening travel</subject><subject>random parameter heterogeneity</subject><subject>Route choice model</subject><subject>Time division multiplexing</subject><subject>Time measurement</subject><subject>Trajectory</subject><subject>Urban areas</subject><issn>2153-0017</issn><isbn>9798350399462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM9KAzEYxKMgWLRvIPi9wNb822Rz1EVtoUWp1WtJN9-2kd1EdlOkNx_d1epc5jK_GRhCrhmdMEbNzWz1UuZ60IRTLiaMSs5FQU_I2GhTiJwKY6Tip2TEWS4ySpk-J-O-f6eDBC-UoCPytdg3yWd9hcF2PsIy7hNCuYu-QlhEh40PW7izPTqIAZY2uNjCs-1siwm7Hn75EFtvG5jHrU9HCj592sH0JxO3GNCnA_gAC7Shh6EE3oY5Gyq8JGe1bXoc__kFeX24X5XTbP70OCtv55nnVKaMO65qIWSRF5RKp2plNkoVSlpmi1oJVkvHJLO1cRVWihmpBddaOa05ExspLsjVsdcj4vqj863tDuv_08Q3vuhhmw</recordid><startdate>20230924</startdate><enddate>20230924</enddate><creator>Yuan, Quan</creator><creator>Pan, Ruixu</creator><creator>Deng, Jihao</creator><creator>Li, Tianhao</creator><creator>Chen, Xiaohong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230924</creationdate><title>Multi-scenario Route Choice Modeling Based on Random Parameters Multinomial Logit Model with Heterogeneity in Means and Variance</title><author>Yuan, Quan ; Pan, Ruixu ; Deng, Jihao ; Li, Tianhao ; Chen, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-2d26f334858004d6f69b66864a1a8f631f4d141af9dcec6194732776d77213b43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Behavioral sciences</topic><topic>Data models</topic><topic>Logistic regression</topic><topic>morning and evening travel</topic><topic>random parameter heterogeneity</topic><topic>Route choice model</topic><topic>Time division multiplexing</topic><topic>Time measurement</topic><topic>Trajectory</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>Pan, Ruixu</creatorcontrib><creatorcontrib>Deng, Jihao</creatorcontrib><creatorcontrib>Li, Tianhao</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Quan</au><au>Pan, Ruixu</au><au>Deng, Jihao</au><au>Li, Tianhao</au><au>Chen, Xiaohong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-scenario Route Choice Modeling Based on Random Parameters Multinomial Logit Model with Heterogeneity in Means and Variance</atitle><btitle>2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)</btitle><stitle>ITSC</stitle><date>2023-09-24</date><risdate>2023</risdate><spage>2776</spage><epage>2783</epage><pages>2776-2783</pages><eissn>2153-0017</eissn><eisbn>9798350399462</eisbn><abstract>Travel demand management (TDM) strategies have been widely adopted to tackle the persisting traffic congestion in metropolitan areas [1]. To evaluate the effects of TDM strategies, it is imperative to disentangle the dynamics of individual travel behaviors, usually through developing route choice models. Based on long-term trajectory data from passenger vehicles, this study investigates individual route characteristics, travel features, and traveler attributes, to explore route choice behaviors for respectively morning and evening travel during weekdays. By categorizing the choice set of each trip into five alternatives based on different routing strategies, we propose a new route choice model that accounts for route overlap and incorporates random parameter heterogeneity in means and variances. This model demonstrates superior fitting performance compared to Path-Size Multinomial Logit and Mixed Logit models. Furthermore, our findings reveal temporal disparities in route choice behavior, providing valuable insights for the implementation of personalized measures that aim at guiding travelers to change their departure time or modify their route choices.</abstract><pub>IEEE</pub><doi>10.1109/ITSC57777.2023.10422380</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-0017
ispartof 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023, p.2776-2783
issn 2153-0017
language eng
recordid cdi_ieee_primary_10422380
source IEEE Xplore All Conference Series
subjects Behavioral sciences
Data models
Logistic regression
morning and evening travel
random parameter heterogeneity
Route choice model
Time division multiplexing
Time measurement
Trajectory
Urban areas
title Multi-scenario Route Choice Modeling Based on Random Parameters Multinomial Logit Model with Heterogeneity in Means and Variance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-scenario%20Route%20Choice%20Modeling%20Based%20on%20Random%20Parameters%20Multinomial%20Logit%20Model%20with%20Heterogeneity%20in%20Means%20and%20Variance&rft.btitle=2023%20IEEE%2026th%20International%20Conference%20on%20Intelligent%20Transportation%20Systems%20(ITSC)&rft.au=Yuan,%20Quan&rft.date=2023-09-24&rft.spage=2776&rft.epage=2783&rft.pages=2776-2783&rft.eissn=2153-0017&rft_id=info:doi/10.1109/ITSC57777.2023.10422380&rft.eisbn=9798350399462&rft_dat=%3Cieee_CHZPO%3E10422380%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-2d26f334858004d6f69b66864a1a8f631f4d141af9dcec6194732776d77213b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10422380&rfr_iscdi=true