Loading…
Higher Order Sliding Mode Observer Based Fast Composite Backstepping Control for HESS in DC Microgrids
Hybrid energy storage system (HESS) is effective to compensate for fluctuation power in renewables and fast fluctuation loads in DC microgrids. To regulate DC bus voltage, a power management strategy is an essential issue. In the meantime, the increasing integration of constant power loads (CPLs) in...
Saved in:
Published in: | IEEE transactions on sustainable energy 2024-07, Vol.15 (3), p.1627-1639 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hybrid energy storage system (HESS) is effective to compensate for fluctuation power in renewables and fast fluctuation loads in DC microgrids. To regulate DC bus voltage, a power management strategy is an essential issue. In the meantime, the increasing integration of constant power loads (CPLs) in DC microgrids brings great challenges to stable operation due to their negative incremental impedance. In this paper, a fast composite backstepping control (FBC) method is proposed for the HESS to achieve faster dynamics, smaller voltage variations, and large-signal stabilization. In the FBC method, a higher order sliding mode observer (HOSMO) is adopted to estimate the coupled disturbances. Furthermore, the FBC method is integrated with the droop control; so that the FBC-based decentralized power allocation (FBC-DPA) strategy for HESS in DC microgrids is developed. The proposed FBC method is designed based on the Lyapunov function to ensure its stability. Moreover, the design guidelines are provided to facilitate the application of the proposed method. Both simulation and experimental studies under different operating scenarios show that the proposed method achieves faster voltage recovery and smaller voltage variations than the conventional backstepping control method. |
---|---|
ISSN: | 1949-3029 1949-3037 1949-3037 |
DOI: | 10.1109/TSTE.2024.3364653 |