Loading…

Interrogating Sea Ice Predictability With Gradients

Predicting sea ice concentration (SIC) is an important task in climate analysis. The recently proposed deep learning system IceNet is the state-of-the-art sea ice prediction model. IceNet takes high-dimensional climate simulations and observational data as input features and forecasts SIC for the ne...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Main Authors: Joakimsen, Harald L., Martinsen, Iver, Luppino, Luigi T., McDonald, Andrew, Hosking, Scott, Jenssen, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-c8b40ef97163f177e5a29ae67c292a408522932d27bfbd09ae4f2313ccf997c83
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Joakimsen, Harald L.
Martinsen, Iver
Luppino, Luigi T.
McDonald, Andrew
Hosking, Scott
Jenssen, Robert
description Predicting sea ice concentration (SIC) is an important task in climate analysis. The recently proposed deep learning system IceNet is the state-of-the-art sea ice prediction model. IceNet takes high-dimensional climate simulations and observational data as input features and forecasts SIC for the next 6 months over a spatial grid over the northern hemisphere. The model has proven to be particularly good at predicting extreme sea ice events compared with previous dynamical models, but lacks interpretability. In the original IceNet paper, a permute-and-predict approach was taken for assessing feature importance. However, this approach is not capable of revealing whether a feature contributes positively or negatively to the final prediction, nor can it reveal the importance of features over the spatial grid of predictions. In this letter, we take steps to instead interrogate the effect of the IceNet input feature with a gradient-based analysis, taking advantage of developments within the deep learning literature to open the so-called black box. Our analysis focuses on the unusually large sea ice extent event in September 2013 and indicates that IceNet places a strong emphasis on previous observations of SIC, linear trends, and seasonal components when making predictions. In our analysis, we identify which input features are most influential for the prediction and also which spatial location these measurements are particularly influential.
doi_str_mv 10.1109/LGRS.2024.3366308
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10436675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10436675</ieee_id><sourcerecordid>2932576389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c8b40ef97163f177e5a29ae67c292a408522932d27bfbd09ae4f2313ccf997c83</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrPjfJUYrWQkGxit5CNjupKXW3Jumh_767tAdPM_A-7ww8CN0SPCEE64fF7H05oZjyCWNVxbA6QyMihCqxkOR82LkohVbfl-gqpTXuSaXkCLF5myHGbmVzaFfFEmwxd1C8RWiCy7YOm5D3xVfIP8Us2iZAm9M1uvB2k-DmNMfo8_npY_pSLl5n8-njonSUV7l0quYYvJakYp5ICcJSbaGSjmpqOVaCUs1oQ2Xt6wb3EfeUEeac11o6xcbo_nh3G7u_HaRs1t0utv1LMxSFrJjSPUWOlItdShG82cbwa-PeEGwGN2ZwYwY35uSm79wdOwEA_vG8z6VgBwHrXu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932576389</pqid></control><display><type>article</type><title>Interrogating Sea Ice Predictability With Gradients</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Joakimsen, Harald L. ; Martinsen, Iver ; Luppino, Luigi T. ; McDonald, Andrew ; Hosking, Scott ; Jenssen, Robert</creator><creatorcontrib>Joakimsen, Harald L. ; Martinsen, Iver ; Luppino, Luigi T. ; McDonald, Andrew ; Hosking, Scott ; Jenssen, Robert</creatorcontrib><description>Predicting sea ice concentration (SIC) is an important task in climate analysis. The recently proposed deep learning system IceNet is the state-of-the-art sea ice prediction model. IceNet takes high-dimensional climate simulations and observational data as input features and forecasts SIC for the next 6 months over a spatial grid over the northern hemisphere. The model has proven to be particularly good at predicting extreme sea ice events compared with previous dynamical models, but lacks interpretability. In the original IceNet paper, a permute-and-predict approach was taken for assessing feature importance. However, this approach is not capable of revealing whether a feature contributes positively or negatively to the final prediction, nor can it reveal the importance of features over the spatial grid of predictions. In this letter, we take steps to instead interrogate the effect of the IceNet input feature with a gradient-based analysis, taking advantage of developments within the deep learning literature to open the so-called black box. Our analysis focuses on the unusually large sea ice extent event in September 2013 and indicates that IceNet places a strong emphasis on previous observations of SIC, linear trends, and seasonal components when making predictions. In our analysis, we identify which input features are most influential for the prediction and also which spatial location these measurements are particularly influential.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3366308</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analysis ; Arctic ; Climate ; Climate models ; Climatic analysis ; Concentration gradient ; Deep learning ; Dynamic models ; explainability ; feature importance ; gradients ; IceNet ; Input variables ; Meteorology ; Northern Hemisphere ; Prediction models ; Predictive models ; Sea ice ; sea ice concentration (SIC) ; Sea ice concentrations ; Sea measurements</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c8b40ef97163f177e5a29ae67c292a408522932d27bfbd09ae4f2313ccf997c83</cites><orcidid>0000-0002-7496-8474 ; 0000-0001-9994-2476 ; 0000-0002-7003-9213 ; 0000-0002-1288-817X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10436675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Joakimsen, Harald L.</creatorcontrib><creatorcontrib>Martinsen, Iver</creatorcontrib><creatorcontrib>Luppino, Luigi T.</creatorcontrib><creatorcontrib>McDonald, Andrew</creatorcontrib><creatorcontrib>Hosking, Scott</creatorcontrib><creatorcontrib>Jenssen, Robert</creatorcontrib><title>Interrogating Sea Ice Predictability With Gradients</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Predicting sea ice concentration (SIC) is an important task in climate analysis. The recently proposed deep learning system IceNet is the state-of-the-art sea ice prediction model. IceNet takes high-dimensional climate simulations and observational data as input features and forecasts SIC for the next 6 months over a spatial grid over the northern hemisphere. The model has proven to be particularly good at predicting extreme sea ice events compared with previous dynamical models, but lacks interpretability. In the original IceNet paper, a permute-and-predict approach was taken for assessing feature importance. However, this approach is not capable of revealing whether a feature contributes positively or negatively to the final prediction, nor can it reveal the importance of features over the spatial grid of predictions. In this letter, we take steps to instead interrogate the effect of the IceNet input feature with a gradient-based analysis, taking advantage of developments within the deep learning literature to open the so-called black box. Our analysis focuses on the unusually large sea ice extent event in September 2013 and indicates that IceNet places a strong emphasis on previous observations of SIC, linear trends, and seasonal components when making predictions. In our analysis, we identify which input features are most influential for the prediction and also which spatial location these measurements are particularly influential.</description><subject>Analysis</subject><subject>Arctic</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatic analysis</subject><subject>Concentration gradient</subject><subject>Deep learning</subject><subject>Dynamic models</subject><subject>explainability</subject><subject>feature importance</subject><subject>gradients</subject><subject>IceNet</subject><subject>Input variables</subject><subject>Meteorology</subject><subject>Northern Hemisphere</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Sea ice</subject><subject>sea ice concentration (SIC)</subject><subject>Sea ice concentrations</subject><subject>Sea measurements</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrPjfJUYrWQkGxit5CNjupKXW3Jumh_767tAdPM_A-7ww8CN0SPCEE64fF7H05oZjyCWNVxbA6QyMihCqxkOR82LkohVbfl-gqpTXuSaXkCLF5myHGbmVzaFfFEmwxd1C8RWiCy7YOm5D3xVfIP8Us2iZAm9M1uvB2k-DmNMfo8_npY_pSLl5n8-njonSUV7l0quYYvJakYp5ICcJSbaGSjmpqOVaCUs1oQ2Xt6wb3EfeUEeac11o6xcbo_nh3G7u_HaRs1t0utv1LMxSFrJjSPUWOlItdShG82cbwa-PeEGwGN2ZwYwY35uSm79wdOwEA_vG8z6VgBwHrXu8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Joakimsen, Harald L.</creator><creator>Martinsen, Iver</creator><creator>Luppino, Luigi T.</creator><creator>McDonald, Andrew</creator><creator>Hosking, Scott</creator><creator>Jenssen, Robert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7496-8474</orcidid><orcidid>https://orcid.org/0000-0001-9994-2476</orcidid><orcidid>https://orcid.org/0000-0002-7003-9213</orcidid><orcidid>https://orcid.org/0000-0002-1288-817X</orcidid></search><sort><creationdate>2024</creationdate><title>Interrogating Sea Ice Predictability With Gradients</title><author>Joakimsen, Harald L. ; Martinsen, Iver ; Luppino, Luigi T. ; McDonald, Andrew ; Hosking, Scott ; Jenssen, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c8b40ef97163f177e5a29ae67c292a408522932d27bfbd09ae4f2313ccf997c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Arctic</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatic analysis</topic><topic>Concentration gradient</topic><topic>Deep learning</topic><topic>Dynamic models</topic><topic>explainability</topic><topic>feature importance</topic><topic>gradients</topic><topic>IceNet</topic><topic>Input variables</topic><topic>Meteorology</topic><topic>Northern Hemisphere</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Sea ice</topic><topic>sea ice concentration (SIC)</topic><topic>Sea ice concentrations</topic><topic>Sea measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joakimsen, Harald L.</creatorcontrib><creatorcontrib>Martinsen, Iver</creatorcontrib><creatorcontrib>Luppino, Luigi T.</creatorcontrib><creatorcontrib>McDonald, Andrew</creatorcontrib><creatorcontrib>Hosking, Scott</creatorcontrib><creatorcontrib>Jenssen, Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joakimsen, Harald L.</au><au>Martinsen, Iver</au><au>Luppino, Luigi T.</au><au>McDonald, Andrew</au><au>Hosking, Scott</au><au>Jenssen, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interrogating Sea Ice Predictability With Gradients</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Predicting sea ice concentration (SIC) is an important task in climate analysis. The recently proposed deep learning system IceNet is the state-of-the-art sea ice prediction model. IceNet takes high-dimensional climate simulations and observational data as input features and forecasts SIC for the next 6 months over a spatial grid over the northern hemisphere. The model has proven to be particularly good at predicting extreme sea ice events compared with previous dynamical models, but lacks interpretability. In the original IceNet paper, a permute-and-predict approach was taken for assessing feature importance. However, this approach is not capable of revealing whether a feature contributes positively or negatively to the final prediction, nor can it reveal the importance of features over the spatial grid of predictions. In this letter, we take steps to instead interrogate the effect of the IceNet input feature with a gradient-based analysis, taking advantage of developments within the deep learning literature to open the so-called black box. Our analysis focuses on the unusually large sea ice extent event in September 2013 and indicates that IceNet places a strong emphasis on previous observations of SIC, linear trends, and seasonal components when making predictions. In our analysis, we identify which input features are most influential for the prediction and also which spatial location these measurements are particularly influential.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3366308</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7496-8474</orcidid><orcidid>https://orcid.org/0000-0001-9994-2476</orcidid><orcidid>https://orcid.org/0000-0002-7003-9213</orcidid><orcidid>https://orcid.org/0000-0002-1288-817X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_10436675
source IEEE Electronic Library (IEL) Journals
subjects Analysis
Arctic
Climate
Climate models
Climatic analysis
Concentration gradient
Deep learning
Dynamic models
explainability
feature importance
gradients
IceNet
Input variables
Meteorology
Northern Hemisphere
Prediction models
Predictive models
Sea ice
sea ice concentration (SIC)
Sea ice concentrations
Sea measurements
title Interrogating Sea Ice Predictability With Gradients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interrogating%20Sea%20Ice%20Predictability%20With%20Gradients&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Joakimsen,%20Harald%20L.&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3366308&rft_dat=%3Cproquest_ieee_%3E2932576389%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-c8b40ef97163f177e5a29ae67c292a408522932d27bfbd09ae4f2313ccf997c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932576389&rft_id=info:pmid/&rft_ieee_id=10436675&rfr_iscdi=true