Loading…
Detecting Predictability in Multi-Sensor Monitoring of Indoor Wireless Communication Environment
A multi-sensor monitoring system has been developed for real-time monitoring and analysis of indoor wireless communication environments. The system uses commodity hardware and open-source software platforms, which are low cost and suitable for open and cooperative development. It is shown that analy...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Itaya, Satoko Ohori, Fumiko Osuga, Toru Matsumura, Takeshi |
description | A multi-sensor monitoring system has been developed for real-time monitoring and analysis of indoor wireless communication environments. The system uses commodity hardware and open-source software platforms, which are low cost and suitable for open and cooperative development. It is shown that analysis of time series data of Wi-Fi signal strength obtained from multiple sensors in different rooms can be used to detect predictability relations between signals at different positions. |
doi_str_mv | 10.1109/ICCE59016.2024.10444296 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10444296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10444296</ieee_id><sourcerecordid>10444296</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-17bea319e902adcf96b7242859b1a7ff49c96e2cdc1c850cce64998a7f263a403</originalsourceid><addsrcrecordid>eNo1kFFLwzAUhaMgOOf-gWD_QGdukqa9j1KnDjYUVHycaXorkTaRNBP2762oT-dwvsN5OIxdAl8CcLxa1_WqQA56KbhQS-BKKYH6iC2wxEoWXAoFUh-zmYCiyhXncMrOxvFjMogFztjbDSWyyfn37DFS62wyjetdOmTOZ9t9n1z-RH4MMdsG71KIP83QZWvfhil8dZF6GsesDsOw986a5ILPVv7LxeAH8umcnXSmH2nxp3P2crt6ru_zzcPdur7e5A4AUw5lQ0YCEnJhWtuhbkqhRFVgA6bsOoUWNQnbWrBVwa0lrRCrCQktjeJyzi5-dx0R7T6jG0w87P4fkd_Jt1e-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting Predictability in Multi-Sensor Monitoring of Indoor Wireless Communication Environment</title><source>IEEE Xplore All Conference Series</source><creator>Itaya, Satoko ; Ohori, Fumiko ; Osuga, Toru ; Matsumura, Takeshi</creator><creatorcontrib>Itaya, Satoko ; Ohori, Fumiko ; Osuga, Toru ; Matsumura, Takeshi</creatorcontrib><description>A multi-sensor monitoring system has been developed for real-time monitoring and analysis of indoor wireless communication environments. The system uses commodity hardware and open-source software platforms, which are low cost and suitable for open and cooperative development. It is shown that analysis of time series data of Wi-Fi signal strength obtained from multiple sensors in different rooms can be used to detect predictability relations between signals at different positions.</description><identifier>EISSN: 2158-4001</identifier><identifier>EISBN: 9798350324136</identifier><identifier>DOI: 10.1109/ICCE59016.2024.10444296</identifier><language>eng</language><publisher>IEEE</publisher><subject>link quality ; machine learning ; Monitoring ; prediction ; Sensors ; Spatial resolution ; Time measurement ; Time series analysis ; Wi-Fi ; Wireless communication ; Wireless fidelity</subject><ispartof>2024 IEEE International Conference on Consumer Electronics (ICCE), 2024, p.1-2</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10444296$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10444296$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Itaya, Satoko</creatorcontrib><creatorcontrib>Ohori, Fumiko</creatorcontrib><creatorcontrib>Osuga, Toru</creatorcontrib><creatorcontrib>Matsumura, Takeshi</creatorcontrib><title>Detecting Predictability in Multi-Sensor Monitoring of Indoor Wireless Communication Environment</title><title>2024 IEEE International Conference on Consumer Electronics (ICCE)</title><addtitle>ICCE</addtitle><description>A multi-sensor monitoring system has been developed for real-time monitoring and analysis of indoor wireless communication environments. The system uses commodity hardware and open-source software platforms, which are low cost and suitable for open and cooperative development. It is shown that analysis of time series data of Wi-Fi signal strength obtained from multiple sensors in different rooms can be used to detect predictability relations between signals at different positions.</description><subject>link quality</subject><subject>machine learning</subject><subject>Monitoring</subject><subject>prediction</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>Time measurement</subject><subject>Time series analysis</subject><subject>Wi-Fi</subject><subject>Wireless communication</subject><subject>Wireless fidelity</subject><issn>2158-4001</issn><isbn>9798350324136</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kFFLwzAUhaMgOOf-gWD_QGdukqa9j1KnDjYUVHycaXorkTaRNBP2762oT-dwvsN5OIxdAl8CcLxa1_WqQA56KbhQS-BKKYH6iC2wxEoWXAoFUh-zmYCiyhXncMrOxvFjMogFztjbDSWyyfn37DFS62wyjetdOmTOZ9t9n1z-RH4MMdsG71KIP83QZWvfhil8dZF6GsesDsOw986a5ILPVv7LxeAH8umcnXSmH2nxp3P2crt6ru_zzcPdur7e5A4AUw5lQ0YCEnJhWtuhbkqhRFVgA6bsOoUWNQnbWrBVwa0lrRCrCQktjeJyzi5-dx0R7T6jG0w87P4fkd_Jt1e-</recordid><startdate>20240106</startdate><enddate>20240106</enddate><creator>Itaya, Satoko</creator><creator>Ohori, Fumiko</creator><creator>Osuga, Toru</creator><creator>Matsumura, Takeshi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240106</creationdate><title>Detecting Predictability in Multi-Sensor Monitoring of Indoor Wireless Communication Environment</title><author>Itaya, Satoko ; Ohori, Fumiko ; Osuga, Toru ; Matsumura, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-17bea319e902adcf96b7242859b1a7ff49c96e2cdc1c850cce64998a7f263a403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>link quality</topic><topic>machine learning</topic><topic>Monitoring</topic><topic>prediction</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>Time measurement</topic><topic>Time series analysis</topic><topic>Wi-Fi</topic><topic>Wireless communication</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Itaya, Satoko</creatorcontrib><creatorcontrib>Ohori, Fumiko</creatorcontrib><creatorcontrib>Osuga, Toru</creatorcontrib><creatorcontrib>Matsumura, Takeshi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Itaya, Satoko</au><au>Ohori, Fumiko</au><au>Osuga, Toru</au><au>Matsumura, Takeshi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting Predictability in Multi-Sensor Monitoring of Indoor Wireless Communication Environment</atitle><btitle>2024 IEEE International Conference on Consumer Electronics (ICCE)</btitle><stitle>ICCE</stitle><date>2024-01-06</date><risdate>2024</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><eissn>2158-4001</eissn><eisbn>9798350324136</eisbn><abstract>A multi-sensor monitoring system has been developed for real-time monitoring and analysis of indoor wireless communication environments. The system uses commodity hardware and open-source software platforms, which are low cost and suitable for open and cooperative development. It is shown that analysis of time series data of Wi-Fi signal strength obtained from multiple sensors in different rooms can be used to detect predictability relations between signals at different positions.</abstract><pub>IEEE</pub><doi>10.1109/ICCE59016.2024.10444296</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2158-4001 |
ispartof | 2024 IEEE International Conference on Consumer Electronics (ICCE), 2024, p.1-2 |
issn | 2158-4001 |
language | eng |
recordid | cdi_ieee_primary_10444296 |
source | IEEE Xplore All Conference Series |
subjects | link quality machine learning Monitoring prediction Sensors Spatial resolution Time measurement Time series analysis Wi-Fi Wireless communication Wireless fidelity |
title | Detecting Predictability in Multi-Sensor Monitoring of Indoor Wireless Communication Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20Predictability%20in%20Multi-Sensor%20Monitoring%20of%20Indoor%20Wireless%20Communication%20Environment&rft.btitle=2024%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20(ICCE)&rft.au=Itaya,%20Satoko&rft.date=2024-01-06&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.eissn=2158-4001&rft_id=info:doi/10.1109/ICCE59016.2024.10444296&rft.eisbn=9798350324136&rft_dat=%3Cieee_CHZPO%3E10444296%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-17bea319e902adcf96b7242859b1a7ff49c96e2cdc1c850cce64998a7f263a403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10444296&rfr_iscdi=true |