Loading…

CharNeRF: 3D Character Generation from Concept Art

3D modeling holds significant importance in the realms of AR/VR and gaming, allowing for both artistic creativity and practical applications. However, the process is often time-consuming and demands a high level of skill. In this paper, we present a novel approach to create volumetric representation...

Full description

Saved in:
Bibliographic Details
Main Authors: Chu, Eddy, Chen, Yiyang, Raissi, Chedy, Bhojan, Anand
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3D modeling holds significant importance in the realms of AR/VR and gaming, allowing for both artistic creativity and practical applications. However, the process is often time-consuming and demands a high level of skill. In this paper, we present a novel approach to create volumetric representations of 3D characters from consistent turnaround concept art, which serves as the standard input in the 3D modeling industry. While Neural Radiance Field (NeRF) has been a game-changer in image-based 3D reconstruction, to the best of our knowledge, there is no known research that optimizes the pipeline for concept art. To harness the potential of concept art, with its defined body poses and specific view angles, we propose encoding it as priors for our model. We train the network to make use of these priors for various 3D points through a learnable view-direction-attended multi-head self-attention layer. Additionally, we demonstrate that a combination of ray sampling and surface sampling enhances the inference capabilities of our network. Our model is able to generate high-quality 360-degree views of characters. Subsequently, we provide a simple guideline to better leverage our model to extract the 3D mesh. It is important to note that our model's inferencing capabilities are influenced by the training data's characteristics, primarily focusing on characters with a single head, two arms, and two legs. Nevertheless, our methodology remains versatile and adaptable to concept art from diverse subject matters, without imposing any specific assumptions on the data.
ISSN:2771-7453
DOI:10.1109/AIxVR59861.2024.00031