Loading…

Self-Supervised Pretraining for Robust Personalized Voice Activity Detection in Adverse Conditions

In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC...

Full description

Saved in:
Bibliographic Details
Main Authors: Bovbjerg, Holger Severin, Jensen, Jesper, Ostergaard, Jan, Tan, Zheng-Hua
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10130
container_issue
container_start_page 10126
container_title
container_volume
creator Bovbjerg, Holger Severin
Jensen, Jesper
Ostergaard, Jan
Tan, Zheng-Hua
description In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC) framework and fine-tune it for personalized VAD. We also propose a denoising variant of APC, with the goal of improving the robustness of personalized VAD. The trained models are systematically evaluated on both clean speech and speech contaminated by various types of noise at different SNR-levels and compared to a purely supervised model. Our experiments show that self-supervised pretraining not only improves performance in clean conditions, but also yields models which are more robust to adverse conditions compared to purely supervised learning.
doi_str_mv 10.1109/ICASSP48485.2024.10447653
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10447653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10447653</ieee_id><sourcerecordid>10447653</sourcerecordid><originalsourceid>FETCH-LOGICAL-i723-32cbe6f88aa44dd3a4d6e0714d8dca8287b53857433623436a7cb9baf206eae13</originalsourceid><addsrcrecordid>eNo1UG1LwzAYjILgnPsHfog_oDPJ87RJP476CgOLHeK3kTZPJTLbkXSF-eutqJ_uuDsO7hi7lmIppchvnopVVZVo0KRLJRQupUDUWQonbJHr3EAqACdTnrKZAp0nMhdv5-wixg8hhNFoZqyuaNcm1WFPYfSRHC8DDcH6znfvvO0Df-nrQxx4SSH2nd35rynz2vuG-KoZ_OiHI7-lgSbed9x3fOXGKUq86Dvnf8R4yc5au4u0-MM529zfbYrHZP38ME1YJ14rSEA1NWWtMdYiOgcWXUZCS3TGNdYoo-sUTKoRIFOAkFnd1HltWyUysiRhzq5-az0RbffBf9pw3P5fAt8DJFiA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-Supervised Pretraining for Robust Personalized Voice Activity Detection in Adverse Conditions</title><source>IEEE Xplore All Conference Series</source><creator>Bovbjerg, Holger Severin ; Jensen, Jesper ; Ostergaard, Jan ; Tan, Zheng-Hua</creator><creatorcontrib>Bovbjerg, Holger Severin ; Jensen, Jesper ; Ostergaard, Jan ; Tan, Zheng-Hua</creatorcontrib><description>In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC) framework and fine-tune it for personalized VAD. We also propose a denoising variant of APC, with the goal of improving the robustness of personalized VAD. The trained models are systematically evaluated on both clean speech and speech contaminated by various types of noise at different SNR-levels and compared to a purely supervised model. Our experiments show that self-supervised pretraining not only improves performance in clean conditions, but also yields models which are more robust to adverse conditions compared to purely supervised learning.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9798350344851</identifier><identifier>DOI: 10.1109/ICASSP48485.2024.10447653</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep Learning ; Noise reduction ; Predictive coding ; Robustness ; Self-Supervised Learning ; Signal processing ; Supervised learning ; Target Speaker ; Training ; Voice activity detection</subject><ispartof>Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998), 2024, p.10126-10130</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10447653$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10447653$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bovbjerg, Holger Severin</creatorcontrib><creatorcontrib>Jensen, Jesper</creatorcontrib><creatorcontrib>Ostergaard, Jan</creatorcontrib><creatorcontrib>Tan, Zheng-Hua</creatorcontrib><title>Self-Supervised Pretraining for Robust Personalized Voice Activity Detection in Adverse Conditions</title><title>Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)</title><addtitle>ICASSP</addtitle><description>In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC) framework and fine-tune it for personalized VAD. We also propose a denoising variant of APC, with the goal of improving the robustness of personalized VAD. The trained models are systematically evaluated on both clean speech and speech contaminated by various types of noise at different SNR-levels and compared to a purely supervised model. Our experiments show that self-supervised pretraining not only improves performance in clean conditions, but also yields models which are more robust to adverse conditions compared to purely supervised learning.</description><subject>Deep Learning</subject><subject>Noise reduction</subject><subject>Predictive coding</subject><subject>Robustness</subject><subject>Self-Supervised Learning</subject><subject>Signal processing</subject><subject>Supervised learning</subject><subject>Target Speaker</subject><subject>Training</subject><subject>Voice activity detection</subject><issn>2379-190X</issn><isbn>9798350344851</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UG1LwzAYjILgnPsHfog_oDPJ87RJP476CgOLHeK3kTZPJTLbkXSF-eutqJ_uuDsO7hi7lmIppchvnopVVZVo0KRLJRQupUDUWQonbJHr3EAqACdTnrKZAp0nMhdv5-wixg8hhNFoZqyuaNcm1WFPYfSRHC8DDcH6znfvvO0Df-nrQxx4SSH2nd35rynz2vuG-KoZ_OiHI7-lgSbed9x3fOXGKUq86Dvnf8R4yc5au4u0-MM529zfbYrHZP38ME1YJ14rSEA1NWWtMdYiOgcWXUZCS3TGNdYoo-sUTKoRIFOAkFnd1HltWyUysiRhzq5-az0RbffBf9pw3P5fAt8DJFiA</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Bovbjerg, Holger Severin</creator><creator>Jensen, Jesper</creator><creator>Ostergaard, Jan</creator><creator>Tan, Zheng-Hua</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240414</creationdate><title>Self-Supervised Pretraining for Robust Personalized Voice Activity Detection in Adverse Conditions</title><author>Bovbjerg, Holger Severin ; Jensen, Jesper ; Ostergaard, Jan ; Tan, Zheng-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i723-32cbe6f88aa44dd3a4d6e0714d8dca8287b53857433623436a7cb9baf206eae13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep Learning</topic><topic>Noise reduction</topic><topic>Predictive coding</topic><topic>Robustness</topic><topic>Self-Supervised Learning</topic><topic>Signal processing</topic><topic>Supervised learning</topic><topic>Target Speaker</topic><topic>Training</topic><topic>Voice activity detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Bovbjerg, Holger Severin</creatorcontrib><creatorcontrib>Jensen, Jesper</creatorcontrib><creatorcontrib>Ostergaard, Jan</creatorcontrib><creatorcontrib>Tan, Zheng-Hua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bovbjerg, Holger Severin</au><au>Jensen, Jesper</au><au>Ostergaard, Jan</au><au>Tan, Zheng-Hua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-Supervised Pretraining for Robust Personalized Voice Activity Detection in Adverse Conditions</atitle><btitle>Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)</btitle><stitle>ICASSP</stitle><date>2024-04-14</date><risdate>2024</risdate><spage>10126</spage><epage>10130</epage><pages>10126-10130</pages><eissn>2379-190X</eissn><eisbn>9798350344851</eisbn><abstract>In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC) framework and fine-tune it for personalized VAD. We also propose a denoising variant of APC, with the goal of improving the robustness of personalized VAD. The trained models are systematically evaluated on both clean speech and speech contaminated by various types of noise at different SNR-levels and compared to a purely supervised model. Our experiments show that self-supervised pretraining not only improves performance in clean conditions, but also yields models which are more robust to adverse conditions compared to purely supervised learning.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP48485.2024.10447653</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998), 2024, p.10126-10130
issn 2379-190X
language eng
recordid cdi_ieee_primary_10447653
source IEEE Xplore All Conference Series
subjects Deep Learning
Noise reduction
Predictive coding
Robustness
Self-Supervised Learning
Signal processing
Supervised learning
Target Speaker
Training
Voice activity detection
title Self-Supervised Pretraining for Robust Personalized Voice Activity Detection in Adverse Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-Supervised%20Pretraining%20for%20Robust%20Personalized%20Voice%20Activity%20Detection%20in%20Adverse%20Conditions&rft.btitle=Proceedings%20of%20the%20...%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(1998)&rft.au=Bovbjerg,%20Holger%20Severin&rft.date=2024-04-14&rft.spage=10126&rft.epage=10130&rft.pages=10126-10130&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP48485.2024.10447653&rft.eisbn=9798350344851&rft_dat=%3Cieee_CHZPO%3E10447653%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i723-32cbe6f88aa44dd3a4d6e0714d8dca8287b53857433623436a7cb9baf206eae13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10447653&rfr_iscdi=true