Loading…

Context-Aware Preference Learning System Based on Dirichlet Process Gaussian Mixture Model

We study a context-aware preference learning system that automatically learns user preferences in different environments. The system is based on a Dirichlet process Gaussian mixture model and comprises an environmental model and a preference learning system. The environmental model is used to determ...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Xianbo, van Erp, Bart, Ignatenko, Tanya
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6809
container_issue
container_start_page 6805
container_title
container_volume
creator Xu, Xianbo
van Erp, Bart
Ignatenko, Tanya
description We study a context-aware preference learning system that automatically learns user preferences in different environments. The system is based on a Dirichlet process Gaussian mixture model and comprises an environmental model and a preference learning system. The environmental model is used to determine the user's current environment, based on environmental signals. The preference learning system actively learns user preferences through pairwise comparison trials. During these trials, the so-called reference and alternative proposals are generated by the system and presented to a user, who, in his/her turn, indicates the preferred one. We propose a novel inference approach that allows for environmental model per-sonalization and leads to improved system performance. This is achieved by introducing a two-way dependency between environment and preference domains. Our approach is validated through simulations that demonstrate a significant performance improvement with respect to the baseline model.
doi_str_mv 10.1109/ICASSP48485.2024.10448188
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10448188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10448188</ieee_id><sourcerecordid>10448188</sourcerecordid><originalsourceid>FETCH-LOGICAL-i728-9b62871f9d04f7fce661e8fb766b55006f94263ba13415ec1253d4fce8e03b873</originalsourceid><addsrcrecordid>eNo1kM1KAzEUhaMgWGvfwEV8gKk3_8myVluFFgvtQtyUzMyNRtoZSabYvr0D6urA4ePjcAi5ZTBmDNzd83SyXq-klVaNOXA5ZiClZdaekZEzzgoFoi8UOycDLowrmIPXS3KV8ycAWCPtgLxN26bDY1dMvn1CukoYMGFTIV2gT01s3un6lDvc03ufsaZtQx9iitXHDruebivMmc79IefoG7qMx-7Qa5ZtjbtrchH8LuPoL4dkM3vcTJ-Kxcu8n74oouG2cKXm1rDgapDBhAq1ZmhDabQulQLQwUmuRemZkExhxbgStew5iyBKa8SQ3PxqIyJuv1Lc-3Ta_l8hfgAzzlRW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Context-Aware Preference Learning System Based on Dirichlet Process Gaussian Mixture Model</title><source>IEEE Xplore All Conference Series</source><creator>Xu, Xianbo ; van Erp, Bart ; Ignatenko, Tanya</creator><creatorcontrib>Xu, Xianbo ; van Erp, Bart ; Ignatenko, Tanya</creatorcontrib><description>We study a context-aware preference learning system that automatically learns user preferences in different environments. The system is based on a Dirichlet process Gaussian mixture model and comprises an environmental model and a preference learning system. The environmental model is used to determine the user's current environment, based on environmental signals. The preference learning system actively learns user preferences through pairwise comparison trials. During these trials, the so-called reference and alternative proposals are generated by the system and presented to a user, who, in his/her turn, indicates the preferred one. We propose a novel inference approach that allows for environmental model per-sonalization and leads to improved system performance. This is achieved by introducing a two-way dependency between environment and preference domains. Our approach is validated through simulations that demonstrate a significant performance improvement with respect to the baseline model.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9798350344851</identifier><identifier>DOI: 10.1109/ICASSP48485.2024.10448188</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Active learning ; Bayesian nonparametric modelling ; clustering ; Dirichlet process ; Gaussian mixture model ; Learning systems ; preference learning ; Proposals ; Signal processing ; Speech processing ; System performance</subject><ispartof>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, p.6805-6809</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10448188$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10448188$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Xianbo</creatorcontrib><creatorcontrib>van Erp, Bart</creatorcontrib><creatorcontrib>Ignatenko, Tanya</creatorcontrib><title>Context-Aware Preference Learning System Based on Dirichlet Process Gaussian Mixture Model</title><title>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>We study a context-aware preference learning system that automatically learns user preferences in different environments. The system is based on a Dirichlet process Gaussian mixture model and comprises an environmental model and a preference learning system. The environmental model is used to determine the user's current environment, based on environmental signals. The preference learning system actively learns user preferences through pairwise comparison trials. During these trials, the so-called reference and alternative proposals are generated by the system and presented to a user, who, in his/her turn, indicates the preferred one. We propose a novel inference approach that allows for environmental model per-sonalization and leads to improved system performance. This is achieved by introducing a two-way dependency between environment and preference domains. Our approach is validated through simulations that demonstrate a significant performance improvement with respect to the baseline model.</description><subject>Acoustics</subject><subject>Active learning</subject><subject>Bayesian nonparametric modelling</subject><subject>clustering</subject><subject>Dirichlet process</subject><subject>Gaussian mixture model</subject><subject>Learning systems</subject><subject>preference learning</subject><subject>Proposals</subject><subject>Signal processing</subject><subject>Speech processing</subject><subject>System performance</subject><issn>2379-190X</issn><isbn>9798350344851</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1KAzEUhaMgWGvfwEV8gKk3_8myVluFFgvtQtyUzMyNRtoZSabYvr0D6urA4ePjcAi5ZTBmDNzd83SyXq-klVaNOXA5ZiClZdaekZEzzgoFoi8UOycDLowrmIPXS3KV8ycAWCPtgLxN26bDY1dMvn1CukoYMGFTIV2gT01s3un6lDvc03ufsaZtQx9iitXHDruebivMmc79IefoG7qMx-7Qa5ZtjbtrchH8LuPoL4dkM3vcTJ-Kxcu8n74oouG2cKXm1rDgapDBhAq1ZmhDabQulQLQwUmuRemZkExhxbgStew5iyBKa8SQ3PxqIyJuv1Lc-3Ta_l8hfgAzzlRW</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Xu, Xianbo</creator><creator>van Erp, Bart</creator><creator>Ignatenko, Tanya</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240414</creationdate><title>Context-Aware Preference Learning System Based on Dirichlet Process Gaussian Mixture Model</title><author>Xu, Xianbo ; van Erp, Bart ; Ignatenko, Tanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i728-9b62871f9d04f7fce661e8fb766b55006f94263ba13415ec1253d4fce8e03b873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Active learning</topic><topic>Bayesian nonparametric modelling</topic><topic>clustering</topic><topic>Dirichlet process</topic><topic>Gaussian mixture model</topic><topic>Learning systems</topic><topic>preference learning</topic><topic>Proposals</topic><topic>Signal processing</topic><topic>Speech processing</topic><topic>System performance</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xianbo</creatorcontrib><creatorcontrib>van Erp, Bart</creatorcontrib><creatorcontrib>Ignatenko, Tanya</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Xianbo</au><au>van Erp, Bart</au><au>Ignatenko, Tanya</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Context-Aware Preference Learning System Based on Dirichlet Process Gaussian Mixture Model</atitle><btitle>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2024-04-14</date><risdate>2024</risdate><spage>6805</spage><epage>6809</epage><pages>6805-6809</pages><eissn>2379-190X</eissn><eisbn>9798350344851</eisbn><abstract>We study a context-aware preference learning system that automatically learns user preferences in different environments. The system is based on a Dirichlet process Gaussian mixture model and comprises an environmental model and a preference learning system. The environmental model is used to determine the user's current environment, based on environmental signals. The preference learning system actively learns user preferences through pairwise comparison trials. During these trials, the so-called reference and alternative proposals are generated by the system and presented to a user, who, in his/her turn, indicates the preferred one. We propose a novel inference approach that allows for environmental model per-sonalization and leads to improved system performance. This is achieved by introducing a two-way dependency between environment and preference domains. Our approach is validated through simulations that demonstrate a significant performance improvement with respect to the baseline model.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP48485.2024.10448188</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, p.6805-6809
issn 2379-190X
language eng
recordid cdi_ieee_primary_10448188
source IEEE Xplore All Conference Series
subjects Acoustics
Active learning
Bayesian nonparametric modelling
clustering
Dirichlet process
Gaussian mixture model
Learning systems
preference learning
Proposals
Signal processing
Speech processing
System performance
title Context-Aware Preference Learning System Based on Dirichlet Process Gaussian Mixture Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Context-Aware%20Preference%20Learning%20System%20Based%20on%20Dirichlet%20Process%20Gaussian%20Mixture%20Model&rft.btitle=ICASSP%202024%20-%202024%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Xu,%20Xianbo&rft.date=2024-04-14&rft.spage=6805&rft.epage=6809&rft.pages=6805-6809&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP48485.2024.10448188&rft.eisbn=9798350344851&rft_dat=%3Cieee_CHZPO%3E10448188%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i728-9b62871f9d04f7fce661e8fb766b55006f94263ba13415ec1253d4fce8e03b873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10448188&rfr_iscdi=true