Loading…
Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation
Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4964 |
container_issue | |
container_start_page | 4960 |
container_title | |
container_volume | |
creator | Li, Shuangjie Zhang, Baoming Song, Jianqing Xia, Yifan Xie, Junyuan Wang, Chongjun |
description | Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we propose a novel GNN model based on node correlation called NoC-GNN, to address the deficiencies of existing techniques. NoC-GNN retains relevant nodes while removing irrelevant nodes, enhancing the effectiveness of nodes in the mixed state. NoC-GNN first constructs a new graph structure based on the k-nearest neighbor (kNN) graph to aggregate relevant nodes, and then constructs a matrix based on the new graph structure to remove possibly irrelevant nodes. Finally, the attention mechanism is used to adaptively integrate relevant, irrelevant, and self-information to model both homophilic and heterophilic graphs. Experimental results demonstrate that NoC-GNN achieves superior performance across a wide range of semi-supervised node classification tasks. |
doi_str_mv | 10.1109/ICASSP48485.2024.10448416 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10448416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10448416</ieee_id><sourcerecordid>10448416</sourcerecordid><originalsourceid>FETCH-LOGICAL-i726-4cd25d706a2d020b60f5c5f87d8958feb97d201b9b4a0299605d2986d6e6840c3</originalsourceid><addsrcrecordid>eNo1kN1KAzEUhKMgWGvfwIv4AFtPsvn1TqtWoVRxC3pXs5uzNna7W5Kq-PauqFcfMwMDM4ScMhgzBvbsbnJRFA_CCCPHHLgYMxC9YmqPjKy2JpeQ94Zk-2TAc20zZuH5kByl9AYARgszIC8F4jq0r7QIm9C4GHYBE31ahQbpI266j5_sKtQ1RmwrTOd0Gt12Ref4Hl3TY_fZxXWily6hp11L551HOulixMbtQtcek4PaNQlHfxySxc31YnKbze6n_YBZFjRXmag8l16DctwDh1JBLStZG-2NlabG0mrPgZW2FA64tQqk59Yor1AZAVU-JCe_tQERl9sYNi5-Lf8Pyb8BfEZWQQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation</title><source>IEEE Xplore All Conference Series</source><creator>Li, Shuangjie ; Zhang, Baoming ; Song, Jianqing ; Xia, Yifan ; Xie, Junyuan ; Wang, Chongjun</creator><creatorcontrib>Li, Shuangjie ; Zhang, Baoming ; Song, Jianqing ; Xia, Yifan ; Xie, Junyuan ; Wang, Chongjun</creatorcontrib><description>Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we propose a novel GNN model based on node correlation called NoC-GNN, to address the deficiencies of existing techniques. NoC-GNN retains relevant nodes while removing irrelevant nodes, enhancing the effectiveness of nodes in the mixed state. NoC-GNN first constructs a new graph structure based on the k-nearest neighbor (kNN) graph to aggregate relevant nodes, and then constructs a matrix based on the new graph structure to remove possibly irrelevant nodes. Finally, the attention mechanism is used to adaptively integrate relevant, irrelevant, and self-information to model both homophilic and heterophilic graphs. Experimental results demonstrate that NoC-GNN achieves superior performance across a wide range of semi-supervised node classification tasks.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9798350344851</identifier><identifier>DOI: 10.1109/ICASSP48485.2024.10448416</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Adaptation models ; Aggregates ; Correlation ; Graph neural networks ; Heterophilic Graphs ; Node Classification ; Signal processing ; Task analysis</subject><ispartof>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, p.4960-4964</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10448416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10448416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shuangjie</creatorcontrib><creatorcontrib>Zhang, Baoming</creatorcontrib><creatorcontrib>Song, Jianqing</creatorcontrib><creatorcontrib>Xia, Yifan</creatorcontrib><creatorcontrib>Xie, Junyuan</creatorcontrib><creatorcontrib>Wang, Chongjun</creatorcontrib><title>Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation</title><title>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we propose a novel GNN model based on node correlation called NoC-GNN, to address the deficiencies of existing techniques. NoC-GNN retains relevant nodes while removing irrelevant nodes, enhancing the effectiveness of nodes in the mixed state. NoC-GNN first constructs a new graph structure based on the k-nearest neighbor (kNN) graph to aggregate relevant nodes, and then constructs a matrix based on the new graph structure to remove possibly irrelevant nodes. Finally, the attention mechanism is used to adaptively integrate relevant, irrelevant, and self-information to model both homophilic and heterophilic graphs. Experimental results demonstrate that NoC-GNN achieves superior performance across a wide range of semi-supervised node classification tasks.</description><subject>Acoustics</subject><subject>Adaptation models</subject><subject>Aggregates</subject><subject>Correlation</subject><subject>Graph neural networks</subject><subject>Heterophilic Graphs</subject><subject>Node Classification</subject><subject>Signal processing</subject><subject>Task analysis</subject><issn>2379-190X</issn><isbn>9798350344851</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1KAzEUhKMgWGvfwIv4AFtPsvn1TqtWoVRxC3pXs5uzNna7W5Kq-PauqFcfMwMDM4ScMhgzBvbsbnJRFA_CCCPHHLgYMxC9YmqPjKy2JpeQ94Zk-2TAc20zZuH5kByl9AYARgszIC8F4jq0r7QIm9C4GHYBE31ahQbpI266j5_sKtQ1RmwrTOd0Gt12Ref4Hl3TY_fZxXWily6hp11L551HOulixMbtQtcek4PaNQlHfxySxc31YnKbze6n_YBZFjRXmag8l16DctwDh1JBLStZG-2NlabG0mrPgZW2FA64tQqk59Yor1AZAVU-JCe_tQERl9sYNi5-Lf8Pyb8BfEZWQQ</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Li, Shuangjie</creator><creator>Zhang, Baoming</creator><creator>Song, Jianqing</creator><creator>Xia, Yifan</creator><creator>Xie, Junyuan</creator><creator>Wang, Chongjun</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240414</creationdate><title>Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation</title><author>Li, Shuangjie ; Zhang, Baoming ; Song, Jianqing ; Xia, Yifan ; Xie, Junyuan ; Wang, Chongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i726-4cd25d706a2d020b60f5c5f87d8958feb97d201b9b4a0299605d2986d6e6840c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Adaptation models</topic><topic>Aggregates</topic><topic>Correlation</topic><topic>Graph neural networks</topic><topic>Heterophilic Graphs</topic><topic>Node Classification</topic><topic>Signal processing</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuangjie</creatorcontrib><creatorcontrib>Zhang, Baoming</creatorcontrib><creatorcontrib>Song, Jianqing</creatorcontrib><creatorcontrib>Xia, Yifan</creatorcontrib><creatorcontrib>Xie, Junyuan</creatorcontrib><creatorcontrib>Wang, Chongjun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shuangjie</au><au>Zhang, Baoming</au><au>Song, Jianqing</au><au>Xia, Yifan</au><au>Xie, Junyuan</au><au>Wang, Chongjun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation</atitle><btitle>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2024-04-14</date><risdate>2024</risdate><spage>4960</spage><epage>4964</epage><pages>4960-4964</pages><eissn>2379-190X</eissn><eisbn>9798350344851</eisbn><abstract>Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we propose a novel GNN model based on node correlation called NoC-GNN, to address the deficiencies of existing techniques. NoC-GNN retains relevant nodes while removing irrelevant nodes, enhancing the effectiveness of nodes in the mixed state. NoC-GNN first constructs a new graph structure based on the k-nearest neighbor (kNN) graph to aggregate relevant nodes, and then constructs a matrix based on the new graph structure to remove possibly irrelevant nodes. Finally, the attention mechanism is used to adaptively integrate relevant, irrelevant, and self-information to model both homophilic and heterophilic graphs. Experimental results demonstrate that NoC-GNN achieves superior performance across a wide range of semi-supervised node classification tasks.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP48485.2024.10448416</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, p.4960-4964 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_10448416 |
source | IEEE Xplore All Conference Series |
subjects | Acoustics Adaptation models Aggregates Correlation Graph neural networks Heterophilic Graphs Node Classification Signal processing Task analysis |
title | Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Seeking%20Similarities%20While%20Removing%20Differences:%20Graph%20Neural%20Networks%20Based%20on%20Node%20Correlation&rft.btitle=ICASSP%202024%20-%202024%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Li,%20Shuangjie&rft.date=2024-04-14&rft.spage=4960&rft.epage=4964&rft.pages=4960-4964&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP48485.2024.10448416&rft.eisbn=9798350344851&rft_dat=%3Cieee_CHZPO%3E10448416%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i726-4cd25d706a2d020b60f5c5f87d8958feb97d201b9b4a0299605d2986d6e6840c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10448416&rfr_iscdi=true |