Loading…

Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation

Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Shuangjie, Zhang, Baoming, Song, Jianqing, Xia, Yifan, Xie, Junyuan, Wang, Chongjun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4964
container_issue
container_start_page 4960
container_title
container_volume
creator Li, Shuangjie
Zhang, Baoming
Song, Jianqing
Xia, Yifan
Xie, Junyuan
Wang, Chongjun
description Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we propose a novel GNN model based on node correlation called NoC-GNN, to address the deficiencies of existing techniques. NoC-GNN retains relevant nodes while removing irrelevant nodes, enhancing the effectiveness of nodes in the mixed state. NoC-GNN first constructs a new graph structure based on the k-nearest neighbor (kNN) graph to aggregate relevant nodes, and then constructs a matrix based on the new graph structure to remove possibly irrelevant nodes. Finally, the attention mechanism is used to adaptively integrate relevant, irrelevant, and self-information to model both homophilic and heterophilic graphs. Experimental results demonstrate that NoC-GNN achieves superior performance across a wide range of semi-supervised node classification tasks.
doi_str_mv 10.1109/ICASSP48485.2024.10448416
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10448416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10448416</ieee_id><sourcerecordid>10448416</sourcerecordid><originalsourceid>FETCH-LOGICAL-i726-4cd25d706a2d020b60f5c5f87d8958feb97d201b9b4a0299605d2986d6e6840c3</originalsourceid><addsrcrecordid>eNo1kN1KAzEUhKMgWGvfwIv4AFtPsvn1TqtWoVRxC3pXs5uzNna7W5Kq-PauqFcfMwMDM4ScMhgzBvbsbnJRFA_CCCPHHLgYMxC9YmqPjKy2JpeQ94Zk-2TAc20zZuH5kByl9AYARgszIC8F4jq0r7QIm9C4GHYBE31ahQbpI266j5_sKtQ1RmwrTOd0Gt12Ref4Hl3TY_fZxXWily6hp11L551HOulixMbtQtcek4PaNQlHfxySxc31YnKbze6n_YBZFjRXmag8l16DctwDh1JBLStZG-2NlabG0mrPgZW2FA64tQqk59Yor1AZAVU-JCe_tQERl9sYNi5-Lf8Pyb8BfEZWQQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation</title><source>IEEE Xplore All Conference Series</source><creator>Li, Shuangjie ; Zhang, Baoming ; Song, Jianqing ; Xia, Yifan ; Xie, Junyuan ; Wang, Chongjun</creator><creatorcontrib>Li, Shuangjie ; Zhang, Baoming ; Song, Jianqing ; Xia, Yifan ; Xie, Junyuan ; Wang, Chongjun</creatorcontrib><description>Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we propose a novel GNN model based on node correlation called NoC-GNN, to address the deficiencies of existing techniques. NoC-GNN retains relevant nodes while removing irrelevant nodes, enhancing the effectiveness of nodes in the mixed state. NoC-GNN first constructs a new graph structure based on the k-nearest neighbor (kNN) graph to aggregate relevant nodes, and then constructs a matrix based on the new graph structure to remove possibly irrelevant nodes. Finally, the attention mechanism is used to adaptively integrate relevant, irrelevant, and self-information to model both homophilic and heterophilic graphs. Experimental results demonstrate that NoC-GNN achieves superior performance across a wide range of semi-supervised node classification tasks.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9798350344851</identifier><identifier>DOI: 10.1109/ICASSP48485.2024.10448416</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Adaptation models ; Aggregates ; Correlation ; Graph neural networks ; Heterophilic Graphs ; Node Classification ; Signal processing ; Task analysis</subject><ispartof>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, p.4960-4964</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10448416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10448416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shuangjie</creatorcontrib><creatorcontrib>Zhang, Baoming</creatorcontrib><creatorcontrib>Song, Jianqing</creatorcontrib><creatorcontrib>Xia, Yifan</creatorcontrib><creatorcontrib>Xie, Junyuan</creatorcontrib><creatorcontrib>Wang, Chongjun</creatorcontrib><title>Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation</title><title>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we propose a novel GNN model based on node correlation called NoC-GNN, to address the deficiencies of existing techniques. NoC-GNN retains relevant nodes while removing irrelevant nodes, enhancing the effectiveness of nodes in the mixed state. NoC-GNN first constructs a new graph structure based on the k-nearest neighbor (kNN) graph to aggregate relevant nodes, and then constructs a matrix based on the new graph structure to remove possibly irrelevant nodes. Finally, the attention mechanism is used to adaptively integrate relevant, irrelevant, and self-information to model both homophilic and heterophilic graphs. Experimental results demonstrate that NoC-GNN achieves superior performance across a wide range of semi-supervised node classification tasks.</description><subject>Acoustics</subject><subject>Adaptation models</subject><subject>Aggregates</subject><subject>Correlation</subject><subject>Graph neural networks</subject><subject>Heterophilic Graphs</subject><subject>Node Classification</subject><subject>Signal processing</subject><subject>Task analysis</subject><issn>2379-190X</issn><isbn>9798350344851</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1KAzEUhKMgWGvfwIv4AFtPsvn1TqtWoVRxC3pXs5uzNna7W5Kq-PauqFcfMwMDM4ScMhgzBvbsbnJRFA_CCCPHHLgYMxC9YmqPjKy2JpeQ94Zk-2TAc20zZuH5kByl9AYARgszIC8F4jq0r7QIm9C4GHYBE31ahQbpI266j5_sKtQ1RmwrTOd0Gt12Ref4Hl3TY_fZxXWily6hp11L551HOulixMbtQtcek4PaNQlHfxySxc31YnKbze6n_YBZFjRXmag8l16DctwDh1JBLStZG-2NlabG0mrPgZW2FA64tQqk59Yor1AZAVU-JCe_tQERl9sYNi5-Lf8Pyb8BfEZWQQ</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Li, Shuangjie</creator><creator>Zhang, Baoming</creator><creator>Song, Jianqing</creator><creator>Xia, Yifan</creator><creator>Xie, Junyuan</creator><creator>Wang, Chongjun</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240414</creationdate><title>Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation</title><author>Li, Shuangjie ; Zhang, Baoming ; Song, Jianqing ; Xia, Yifan ; Xie, Junyuan ; Wang, Chongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i726-4cd25d706a2d020b60f5c5f87d8958feb97d201b9b4a0299605d2986d6e6840c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Adaptation models</topic><topic>Aggregates</topic><topic>Correlation</topic><topic>Graph neural networks</topic><topic>Heterophilic Graphs</topic><topic>Node Classification</topic><topic>Signal processing</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuangjie</creatorcontrib><creatorcontrib>Zhang, Baoming</creatorcontrib><creatorcontrib>Song, Jianqing</creatorcontrib><creatorcontrib>Xia, Yifan</creatorcontrib><creatorcontrib>Xie, Junyuan</creatorcontrib><creatorcontrib>Wang, Chongjun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shuangjie</au><au>Zhang, Baoming</au><au>Song, Jianqing</au><au>Xia, Yifan</au><au>Xie, Junyuan</au><au>Wang, Chongjun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation</atitle><btitle>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2024-04-14</date><risdate>2024</risdate><spage>4960</spage><epage>4964</epage><pages>4960-4964</pages><eissn>2379-190X</eissn><eisbn>9798350344851</eisbn><abstract>Graph neural networks (GNNs) have proven highly effective in handling graph-structured data. However, most existing GNNs rely on the homophily assumption, hindering their performance on heterophilic graphs. This limitation is partially due to aggregation containing irrelevant nodes. In this work, we propose a novel GNN model based on node correlation called NoC-GNN, to address the deficiencies of existing techniques. NoC-GNN retains relevant nodes while removing irrelevant nodes, enhancing the effectiveness of nodes in the mixed state. NoC-GNN first constructs a new graph structure based on the k-nearest neighbor (kNN) graph to aggregate relevant nodes, and then constructs a matrix based on the new graph structure to remove possibly irrelevant nodes. Finally, the attention mechanism is used to adaptively integrate relevant, irrelevant, and self-information to model both homophilic and heterophilic graphs. Experimental results demonstrate that NoC-GNN achieves superior performance across a wide range of semi-supervised node classification tasks.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP48485.2024.10448416</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, p.4960-4964
issn 2379-190X
language eng
recordid cdi_ieee_primary_10448416
source IEEE Xplore All Conference Series
subjects Acoustics
Adaptation models
Aggregates
Correlation
Graph neural networks
Heterophilic Graphs
Node Classification
Signal processing
Task analysis
title Seeking Similarities While Removing Differences: Graph Neural Networks Based on Node Correlation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Seeking%20Similarities%20While%20Removing%20Differences:%20Graph%20Neural%20Networks%20Based%20on%20Node%20Correlation&rft.btitle=ICASSP%202024%20-%202024%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Li,%20Shuangjie&rft.date=2024-04-14&rft.spage=4960&rft.epage=4964&rft.pages=4960-4964&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP48485.2024.10448416&rft.eisbn=9798350344851&rft_dat=%3Cieee_CHZPO%3E10448416%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i726-4cd25d706a2d020b60f5c5f87d8958feb97d201b9b4a0299605d2986d6e6840c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10448416&rfr_iscdi=true