Loading…

Quantifying the Effects of Renewable Energy Advancement: A Statistical Analysis Method

This research aims to analyze the diverse impacts of renewable energy progress using a statistical analysis method. The study investigates correlations between variables, including current account balance, interest rates, money flows, electricity, industry application, and international energy trade...

Full description

Saved in:
Bibliographic Details
Main Authors: Chakim, Mochamad Heru Riza, Aini, Qurotul, Lutfiani, Ninda, Ramadhona, Nova, Ariyanto, Ferry, Hardini, Marviola
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Chakim, Mochamad Heru Riza
Aini, Qurotul
Lutfiani, Ninda
Ramadhona, Nova
Ariyanto, Ferry
Hardini, Marviola
description This research aims to analyze the diverse impacts of renewable energy progress using a statistical analysis method. The study investigates correlations between variables, including current account balance, interest rates, money flows, electricity, industry application, and international energy trade balance. Employing multiple regression and principal component analysis (PCA), the research is structured in two phases. Initially, multiple regression is utilized to examine the influence of monetary policy on renewable energy growth, employing nine macroeconomic variables and four energy indicators from the World Bank database (2017). Each economic indicator is subjected to regression analysis against energy variables. Subsequently, principal component analysis is performed on the 13 variables, revealing a strong correlation between renewable energy share in government spending and growth (GSG). Moreover, a notable correlation is observed between government spending, foreign exchange reserves, and industrial application, contributing to significant cost savings. This research highlights limitations such as limited access to renewable energy sources and data gaps, which could be addressed through enhanced datasets from the World Bank and the International Renewable Energy Agency.
doi_str_mv 10.1109/CITSM60085.2023.10455729
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10455729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10455729</ieee_id><sourcerecordid>10455729</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-7bb2587e85c92f6bf93190ac8a3809710578c37b3cbbf47cd0ec85651c17e6e93</originalsourceid><addsrcrecordid>eNo1kMFKAzEUAKMgWGr_wEN-YOtL0mwSb0upWmgRbRVvJUlf2sg2lU207N8rqKeBOcxhCKEMxoyBuZnO16tlDaDlmAMXYwYTKRU3Z2RklNFCggBpan1OBlwpqJg0b5dklPM7AAgOE6jNgLw-fdpUYuhj2tGyRzoLAX3J9BjoMyY8Wdf-yITdrqfN9ssmjwdM5ZY2dFVsiblEb1vaJNv2OWa6xLI_bq_IRbBtxtEfh-TlbraePlSLx_v5tFlUkTFTKuUcl1qhlt7wULtgBDNgvbZCg1EMpNJeKCe8c2Gi_BbQa1lL5pnCGo0YkuvfbkTEzUcXD7brN_8rxDdc_VOr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Quantifying the Effects of Renewable Energy Advancement: A Statistical Analysis Method</title><source>IEEE Xplore All Conference Series</source><creator>Chakim, Mochamad Heru Riza ; Aini, Qurotul ; Lutfiani, Ninda ; Ramadhona, Nova ; Ariyanto, Ferry ; Hardini, Marviola</creator><creatorcontrib>Chakim, Mochamad Heru Riza ; Aini, Qurotul ; Lutfiani, Ninda ; Ramadhona, Nova ; Ariyanto, Ferry ; Hardini, Marviola</creatorcontrib><description>This research aims to analyze the diverse impacts of renewable energy progress using a statistical analysis method. The study investigates correlations between variables, including current account balance, interest rates, money flows, electricity, industry application, and international energy trade balance. Employing multiple regression and principal component analysis (PCA), the research is structured in two phases. Initially, multiple regression is utilized to examine the influence of monetary policy on renewable energy growth, employing nine macroeconomic variables and four energy indicators from the World Bank database (2017). Each economic indicator is subjected to regression analysis against energy variables. Subsequently, principal component analysis is performed on the 13 variables, revealing a strong correlation between renewable energy share in government spending and growth (GSG). Moreover, a notable correlation is observed between government spending, foreign exchange reserves, and industrial application, contributing to significant cost savings. This research highlights limitations such as limited access to renewable energy sources and data gaps, which could be addressed through enhanced datasets from the World Bank and the International Renewable Energy Agency.</description><identifier>EISSN: 2770-159X</identifier><identifier>EISBN: 9798350305968</identifier><identifier>DOI: 10.1109/CITSM60085.2023.10455729</identifier><language>eng</language><publisher>IEEE</publisher><subject>Banking ; Correlation ; Costs ; Economic indicators ; Energy Mix ; Government ; Monetary Policy ; Renewable Energy ; Renewable energy sources ; Reviews</subject><ispartof>2023 11th International Conference on Cyber and IT Service Management (CITSM), 2023, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10455729$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10455729$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chakim, Mochamad Heru Riza</creatorcontrib><creatorcontrib>Aini, Qurotul</creatorcontrib><creatorcontrib>Lutfiani, Ninda</creatorcontrib><creatorcontrib>Ramadhona, Nova</creatorcontrib><creatorcontrib>Ariyanto, Ferry</creatorcontrib><creatorcontrib>Hardini, Marviola</creatorcontrib><title>Quantifying the Effects of Renewable Energy Advancement: A Statistical Analysis Method</title><title>2023 11th International Conference on Cyber and IT Service Management (CITSM)</title><addtitle>CITSM</addtitle><description>This research aims to analyze the diverse impacts of renewable energy progress using a statistical analysis method. The study investigates correlations between variables, including current account balance, interest rates, money flows, electricity, industry application, and international energy trade balance. Employing multiple regression and principal component analysis (PCA), the research is structured in two phases. Initially, multiple regression is utilized to examine the influence of monetary policy on renewable energy growth, employing nine macroeconomic variables and four energy indicators from the World Bank database (2017). Each economic indicator is subjected to regression analysis against energy variables. Subsequently, principal component analysis is performed on the 13 variables, revealing a strong correlation between renewable energy share in government spending and growth (GSG). Moreover, a notable correlation is observed between government spending, foreign exchange reserves, and industrial application, contributing to significant cost savings. This research highlights limitations such as limited access to renewable energy sources and data gaps, which could be addressed through enhanced datasets from the World Bank and the International Renewable Energy Agency.</description><subject>Banking</subject><subject>Correlation</subject><subject>Costs</subject><subject>Economic indicators</subject><subject>Energy Mix</subject><subject>Government</subject><subject>Monetary Policy</subject><subject>Renewable Energy</subject><subject>Renewable energy sources</subject><subject>Reviews</subject><issn>2770-159X</issn><isbn>9798350305968</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMFKAzEUAKMgWGr_wEN-YOtL0mwSb0upWmgRbRVvJUlf2sg2lU207N8rqKeBOcxhCKEMxoyBuZnO16tlDaDlmAMXYwYTKRU3Z2RklNFCggBpan1OBlwpqJg0b5dklPM7AAgOE6jNgLw-fdpUYuhj2tGyRzoLAX3J9BjoMyY8Wdf-yITdrqfN9ssmjwdM5ZY2dFVsiblEb1vaJNv2OWa6xLI_bq_IRbBtxtEfh-TlbraePlSLx_v5tFlUkTFTKuUcl1qhlt7wULtgBDNgvbZCg1EMpNJeKCe8c2Gi_BbQa1lL5pnCGo0YkuvfbkTEzUcXD7brN_8rxDdc_VOr</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Chakim, Mochamad Heru Riza</creator><creator>Aini, Qurotul</creator><creator>Lutfiani, Ninda</creator><creator>Ramadhona, Nova</creator><creator>Ariyanto, Ferry</creator><creator>Hardini, Marviola</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231110</creationdate><title>Quantifying the Effects of Renewable Energy Advancement: A Statistical Analysis Method</title><author>Chakim, Mochamad Heru Riza ; Aini, Qurotul ; Lutfiani, Ninda ; Ramadhona, Nova ; Ariyanto, Ferry ; Hardini, Marviola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-7bb2587e85c92f6bf93190ac8a3809710578c37b3cbbf47cd0ec85651c17e6e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banking</topic><topic>Correlation</topic><topic>Costs</topic><topic>Economic indicators</topic><topic>Energy Mix</topic><topic>Government</topic><topic>Monetary Policy</topic><topic>Renewable Energy</topic><topic>Renewable energy sources</topic><topic>Reviews</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakim, Mochamad Heru Riza</creatorcontrib><creatorcontrib>Aini, Qurotul</creatorcontrib><creatorcontrib>Lutfiani, Ninda</creatorcontrib><creatorcontrib>Ramadhona, Nova</creatorcontrib><creatorcontrib>Ariyanto, Ferry</creatorcontrib><creatorcontrib>Hardini, Marviola</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chakim, Mochamad Heru Riza</au><au>Aini, Qurotul</au><au>Lutfiani, Ninda</au><au>Ramadhona, Nova</au><au>Ariyanto, Ferry</au><au>Hardini, Marviola</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantifying the Effects of Renewable Energy Advancement: A Statistical Analysis Method</atitle><btitle>2023 11th International Conference on Cyber and IT Service Management (CITSM)</btitle><stitle>CITSM</stitle><date>2023-11-10</date><risdate>2023</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2770-159X</eissn><eisbn>9798350305968</eisbn><abstract>This research aims to analyze the diverse impacts of renewable energy progress using a statistical analysis method. The study investigates correlations between variables, including current account balance, interest rates, money flows, electricity, industry application, and international energy trade balance. Employing multiple regression and principal component analysis (PCA), the research is structured in two phases. Initially, multiple regression is utilized to examine the influence of monetary policy on renewable energy growth, employing nine macroeconomic variables and four energy indicators from the World Bank database (2017). Each economic indicator is subjected to regression analysis against energy variables. Subsequently, principal component analysis is performed on the 13 variables, revealing a strong correlation between renewable energy share in government spending and growth (GSG). Moreover, a notable correlation is observed between government spending, foreign exchange reserves, and industrial application, contributing to significant cost savings. This research highlights limitations such as limited access to renewable energy sources and data gaps, which could be addressed through enhanced datasets from the World Bank and the International Renewable Energy Agency.</abstract><pub>IEEE</pub><doi>10.1109/CITSM60085.2023.10455729</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2770-159X
ispartof 2023 11th International Conference on Cyber and IT Service Management (CITSM), 2023, p.1-7
issn 2770-159X
language eng
recordid cdi_ieee_primary_10455729
source IEEE Xplore All Conference Series
subjects Banking
Correlation
Costs
Economic indicators
Energy Mix
Government
Monetary Policy
Renewable Energy
Renewable energy sources
Reviews
title Quantifying the Effects of Renewable Energy Advancement: A Statistical Analysis Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantifying%20the%20Effects%20of%20Renewable%20Energy%20Advancement:%20A%20Statistical%20Analysis%20Method&rft.btitle=2023%2011th%20International%20Conference%20on%20Cyber%20and%20IT%20Service%20Management%20(CITSM)&rft.au=Chakim,%20Mochamad%20Heru%20Riza&rft.date=2023-11-10&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2770-159X&rft_id=info:doi/10.1109/CITSM60085.2023.10455729&rft.eisbn=9798350305968&rft_dat=%3Cieee_CHZPO%3E10455729%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-7bb2587e85c92f6bf93190ac8a3809710578c37b3cbbf47cd0ec85651c17e6e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10455729&rfr_iscdi=true