Loading…

A Safe Deep Reinforcement Learning Approach for Energy Efficient Federated Learning in Wireless Communication Networks

Progressing towards a new era of Artificial Intelligence (AI) - enabled wireless networks, concerns regarding the environmental impact of AI have been raised both in industry and academia. Federated Learning (FL) has emerged as a key privacy preserving decentralized AI technique. Despite efforts cur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on green communications and networking 2024-12, Vol.8 (4), p.1862-1874
Main Authors: Koursioumpas, Nikolaos, Magoula, Lina, Petropouleas, Nikolaos, Thanopoulos, Alexandros-Ioannis, Panagea, Theodora, Alonistioti, Nancy, Gutierrez-Estevez, M. A., Khalili, Ramin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c266t-6968553d5d68616b28beeb37f30a92faf49740509fbd1ee1c0b420ca95ce11b33
cites cdi_FETCH-LOGICAL-c266t-6968553d5d68616b28beeb37f30a92faf49740509fbd1ee1c0b420ca95ce11b33
container_end_page 1874
container_issue 4
container_start_page 1862
container_title IEEE transactions on green communications and networking
container_volume 8
creator Koursioumpas, Nikolaos
Magoula, Lina
Petropouleas, Nikolaos
Thanopoulos, Alexandros-Ioannis
Panagea, Theodora
Alonistioti, Nancy
Gutierrez-Estevez, M. A.
Khalili, Ramin
description Progressing towards a new era of Artificial Intelligence (AI) - enabled wireless networks, concerns regarding the environmental impact of AI have been raised both in industry and academia. Federated Learning (FL) has emerged as a key privacy preserving decentralized AI technique. Despite efforts currently being made in FL, its environmental impact is still an open problem. Targeting the minimization of the overall energy consumption of an FL process, we propose the orchestration of computational and communication resources of the involved devices to minimize the total energy required, while guaranteeing a certain performance of the model. To this end, we propose a Soft Actor Critic Deep Reinforcement Learning (DRL) solution, where a penalty function is introduced during training, penalizing the strategies that violate the constraints of the environment, and contributing towards a safe RL process. A device level synchronization method, along with a computationally cost effective FL environment are proposed, with the goal of further reducing the energy consumption and communication overhead. Evaluation results show the effectiveness and robustness of the proposed scheme compared to four state-of-the-art baseline solutions on different network environments and FL architectures, achieving a decrease of up to 94% in the total energy consumption.
doi_str_mv 10.1109/TGCN.2024.3372695
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10458416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458416</ieee_id><sourcerecordid>10_1109_TGCN_2024_3372695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-6968553d5d68616b28beeb37f30a92faf49740509fbd1ee1c0b420ca95ce11b33</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNQ-gOBiXiB1_pNZlthWoVTQisswmdypo80kTKLSt7ehBbu6B-75zuJD6JaSKaVE32-W-XrKCBNTzlOmtLxAIyZSnjBByOVZvkaTrvskhDAtqdJ8hH5m-NU4wA8ALX4BH1wTLdQQerwCE4MPWzxr29gY-4EPPzwPELd7PHfOWz_UFlBBND1U_4AP-N1H2EHX4byp6-_grel9E_Aa-t8mfnU36MqZXQeT0x2jt8V8kz8mq-flUz5bJZYp1SdKq0xKXslKZYqqkmUlQMlTx4nRzBkndCqIJNqVFQWglpSCEWu0tEBpyfkY0eOujU3XRXBFG31t4r6gpBjcFYO7YnBXnNwdmLsj4wHgrC9kJqjif1FvbDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Safe Deep Reinforcement Learning Approach for Energy Efficient Federated Learning in Wireless Communication Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Koursioumpas, Nikolaos ; Magoula, Lina ; Petropouleas, Nikolaos ; Thanopoulos, Alexandros-Ioannis ; Panagea, Theodora ; Alonistioti, Nancy ; Gutierrez-Estevez, M. A. ; Khalili, Ramin</creator><creatorcontrib>Koursioumpas, Nikolaos ; Magoula, Lina ; Petropouleas, Nikolaos ; Thanopoulos, Alexandros-Ioannis ; Panagea, Theodora ; Alonistioti, Nancy ; Gutierrez-Estevez, M. A. ; Khalili, Ramin</creatorcontrib><description>Progressing towards a new era of Artificial Intelligence (AI) - enabled wireless networks, concerns regarding the environmental impact of AI have been raised both in industry and academia. Federated Learning (FL) has emerged as a key privacy preserving decentralized AI technique. Despite efforts currently being made in FL, its environmental impact is still an open problem. Targeting the minimization of the overall energy consumption of an FL process, we propose the orchestration of computational and communication resources of the involved devices to minimize the total energy required, while guaranteeing a certain performance of the model. To this end, we propose a Soft Actor Critic Deep Reinforcement Learning (DRL) solution, where a penalty function is introduced during training, penalizing the strategies that violate the constraints of the environment, and contributing towards a safe RL process. A device level synchronization method, along with a computationally cost effective FL environment are proposed, with the goal of further reducing the energy consumption and communication overhead. Evaluation results show the effectiveness and robustness of the proposed scheme compared to four state-of-the-art baseline solutions on different network environments and FL architectures, achieving a decrease of up to 94% in the total energy consumption.</description><identifier>ISSN: 2473-2400</identifier><identifier>EISSN: 2473-2400</identifier><identifier>DOI: 10.1109/TGCN.2024.3372695</identifier><identifier>CODEN: ITGCBM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Beyond 5G ; Computational modeling ; Costs ; Energy consumption ; Energy efficiency ; federated learning ; Performance evaluation ; reinforcement learning ; Resource management ; Training</subject><ispartof>IEEE transactions on green communications and networking, 2024-12, Vol.8 (4), p.1862-1874</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-6968553d5d68616b28beeb37f30a92faf49740509fbd1ee1c0b420ca95ce11b33</citedby><cites>FETCH-LOGICAL-c266t-6968553d5d68616b28beeb37f30a92faf49740509fbd1ee1c0b420ca95ce11b33</cites><orcidid>0000-0001-8819-5620 ; 0000-0002-9730-4056 ; 0000-0002-0143-6848 ; 0000-0003-2163-9615 ; 0009-0000-1133-7635 ; 0009-0000-4454-5502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Koursioumpas, Nikolaos</creatorcontrib><creatorcontrib>Magoula, Lina</creatorcontrib><creatorcontrib>Petropouleas, Nikolaos</creatorcontrib><creatorcontrib>Thanopoulos, Alexandros-Ioannis</creatorcontrib><creatorcontrib>Panagea, Theodora</creatorcontrib><creatorcontrib>Alonistioti, Nancy</creatorcontrib><creatorcontrib>Gutierrez-Estevez, M. A.</creatorcontrib><creatorcontrib>Khalili, Ramin</creatorcontrib><title>A Safe Deep Reinforcement Learning Approach for Energy Efficient Federated Learning in Wireless Communication Networks</title><title>IEEE transactions on green communications and networking</title><addtitle>TGCN</addtitle><description>Progressing towards a new era of Artificial Intelligence (AI) - enabled wireless networks, concerns regarding the environmental impact of AI have been raised both in industry and academia. Federated Learning (FL) has emerged as a key privacy preserving decentralized AI technique. Despite efforts currently being made in FL, its environmental impact is still an open problem. Targeting the minimization of the overall energy consumption of an FL process, we propose the orchestration of computational and communication resources of the involved devices to minimize the total energy required, while guaranteeing a certain performance of the model. To this end, we propose a Soft Actor Critic Deep Reinforcement Learning (DRL) solution, where a penalty function is introduced during training, penalizing the strategies that violate the constraints of the environment, and contributing towards a safe RL process. A device level synchronization method, along with a computationally cost effective FL environment are proposed, with the goal of further reducing the energy consumption and communication overhead. Evaluation results show the effectiveness and robustness of the proposed scheme compared to four state-of-the-art baseline solutions on different network environments and FL architectures, achieving a decrease of up to 94% in the total energy consumption.</description><subject>Beyond 5G</subject><subject>Computational modeling</subject><subject>Costs</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>federated learning</subject><subject>Performance evaluation</subject><subject>reinforcement learning</subject><subject>Resource management</subject><subject>Training</subject><issn>2473-2400</issn><issn>2473-2400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Kw0AUhQdRsNQ-gOBiXiB1_pNZlthWoVTQisswmdypo80kTKLSt7ehBbu6B-75zuJD6JaSKaVE32-W-XrKCBNTzlOmtLxAIyZSnjBByOVZvkaTrvskhDAtqdJ8hH5m-NU4wA8ALX4BH1wTLdQQerwCE4MPWzxr29gY-4EPPzwPELd7PHfOWz_UFlBBND1U_4AP-N1H2EHX4byp6-_grel9E_Aa-t8mfnU36MqZXQeT0x2jt8V8kz8mq-flUz5bJZYp1SdKq0xKXslKZYqqkmUlQMlTx4nRzBkndCqIJNqVFQWglpSCEWu0tEBpyfkY0eOujU3XRXBFG31t4r6gpBjcFYO7YnBXnNwdmLsj4wHgrC9kJqjif1FvbDc</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Koursioumpas, Nikolaos</creator><creator>Magoula, Lina</creator><creator>Petropouleas, Nikolaos</creator><creator>Thanopoulos, Alexandros-Ioannis</creator><creator>Panagea, Theodora</creator><creator>Alonistioti, Nancy</creator><creator>Gutierrez-Estevez, M. A.</creator><creator>Khalili, Ramin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8819-5620</orcidid><orcidid>https://orcid.org/0000-0002-9730-4056</orcidid><orcidid>https://orcid.org/0000-0002-0143-6848</orcidid><orcidid>https://orcid.org/0000-0003-2163-9615</orcidid><orcidid>https://orcid.org/0009-0000-1133-7635</orcidid><orcidid>https://orcid.org/0009-0000-4454-5502</orcidid></search><sort><creationdate>20241201</creationdate><title>A Safe Deep Reinforcement Learning Approach for Energy Efficient Federated Learning in Wireless Communication Networks</title><author>Koursioumpas, Nikolaos ; Magoula, Lina ; Petropouleas, Nikolaos ; Thanopoulos, Alexandros-Ioannis ; Panagea, Theodora ; Alonistioti, Nancy ; Gutierrez-Estevez, M. A. ; Khalili, Ramin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-6968553d5d68616b28beeb37f30a92faf49740509fbd1ee1c0b420ca95ce11b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beyond 5G</topic><topic>Computational modeling</topic><topic>Costs</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>federated learning</topic><topic>Performance evaluation</topic><topic>reinforcement learning</topic><topic>Resource management</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Koursioumpas, Nikolaos</creatorcontrib><creatorcontrib>Magoula, Lina</creatorcontrib><creatorcontrib>Petropouleas, Nikolaos</creatorcontrib><creatorcontrib>Thanopoulos, Alexandros-Ioannis</creatorcontrib><creatorcontrib>Panagea, Theodora</creatorcontrib><creatorcontrib>Alonistioti, Nancy</creatorcontrib><creatorcontrib>Gutierrez-Estevez, M. A.</creatorcontrib><creatorcontrib>Khalili, Ramin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on green communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koursioumpas, Nikolaos</au><au>Magoula, Lina</au><au>Petropouleas, Nikolaos</au><au>Thanopoulos, Alexandros-Ioannis</au><au>Panagea, Theodora</au><au>Alonistioti, Nancy</au><au>Gutierrez-Estevez, M. A.</au><au>Khalili, Ramin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Safe Deep Reinforcement Learning Approach for Energy Efficient Federated Learning in Wireless Communication Networks</atitle><jtitle>IEEE transactions on green communications and networking</jtitle><stitle>TGCN</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>8</volume><issue>4</issue><spage>1862</spage><epage>1874</epage><pages>1862-1874</pages><issn>2473-2400</issn><eissn>2473-2400</eissn><coden>ITGCBM</coden><abstract>Progressing towards a new era of Artificial Intelligence (AI) - enabled wireless networks, concerns regarding the environmental impact of AI have been raised both in industry and academia. Federated Learning (FL) has emerged as a key privacy preserving decentralized AI technique. Despite efforts currently being made in FL, its environmental impact is still an open problem. Targeting the minimization of the overall energy consumption of an FL process, we propose the orchestration of computational and communication resources of the involved devices to minimize the total energy required, while guaranteeing a certain performance of the model. To this end, we propose a Soft Actor Critic Deep Reinforcement Learning (DRL) solution, where a penalty function is introduced during training, penalizing the strategies that violate the constraints of the environment, and contributing towards a safe RL process. A device level synchronization method, along with a computationally cost effective FL environment are proposed, with the goal of further reducing the energy consumption and communication overhead. Evaluation results show the effectiveness and robustness of the proposed scheme compared to four state-of-the-art baseline solutions on different network environments and FL architectures, achieving a decrease of up to 94% in the total energy consumption.</abstract><pub>IEEE</pub><doi>10.1109/TGCN.2024.3372695</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8819-5620</orcidid><orcidid>https://orcid.org/0000-0002-9730-4056</orcidid><orcidid>https://orcid.org/0000-0002-0143-6848</orcidid><orcidid>https://orcid.org/0000-0003-2163-9615</orcidid><orcidid>https://orcid.org/0009-0000-1133-7635</orcidid><orcidid>https://orcid.org/0009-0000-4454-5502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2473-2400
ispartof IEEE transactions on green communications and networking, 2024-12, Vol.8 (4), p.1862-1874
issn 2473-2400
2473-2400
language eng
recordid cdi_ieee_primary_10458416
source IEEE Electronic Library (IEL) Journals
subjects Beyond 5G
Computational modeling
Costs
Energy consumption
Energy efficiency
federated learning
Performance evaluation
reinforcement learning
Resource management
Training
title A Safe Deep Reinforcement Learning Approach for Energy Efficient Federated Learning in Wireless Communication Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Safe%20Deep%20Reinforcement%20Learning%20Approach%20for%20Energy%20Efficient%20Federated%20Learning%20in%20Wireless%20Communication%20Networks&rft.jtitle=IEEE%20transactions%20on%20green%20communications%20and%20networking&rft.au=Koursioumpas,%20Nikolaos&rft.date=2024-12-01&rft.volume=8&rft.issue=4&rft.spage=1862&rft.epage=1874&rft.pages=1862-1874&rft.issn=2473-2400&rft.eissn=2473-2400&rft.coden=ITGCBM&rft_id=info:doi/10.1109/TGCN.2024.3372695&rft_dat=%3Ccrossref_ieee_%3E10_1109_TGCN_2024_3372695%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-6968553d5d68616b28beeb37f30a92faf49740509fbd1ee1c0b420ca95ce11b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10458416&rfr_iscdi=true