Loading…

A Multi-Task Deep Learning Approach for Non-Intrusive Load Monitoring of Multiple Appliances

This letter proposes a novel deep learning-based multi-task approach for non-intrusive monitoring of home appliances-the first of its kind-where a network can simultaneously estimate the states and disaggregate energies of multiple appliances. An attention-powered encoder-decoder network, comprising...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2024-05, Vol.15 (3), p.3337-3340
Main Authors: Dash, Suryalok, Sahoo, N. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-9ff1cb8e46cc4c2708ae4551553b0e5e02dd8bd282534d21076caf0c7a51a7843
container_end_page 3340
container_issue 3
container_start_page 3337
container_title IEEE transactions on smart grid
container_volume 15
creator Dash, Suryalok
Sahoo, N. C.
description This letter proposes a novel deep learning-based multi-task approach for non-intrusive monitoring of home appliances-the first of its kind-where a network can simultaneously estimate the states and disaggregate energies of multiple appliances. An attention-powered encoder-decoder network, comprising a convolutional layer and a long short-term memory, is deployed for the above tasks. Test results from two real-world datasets demonstrate the approach's feasibility, showcasing superior performance and reduced memory requirements.
doi_str_mv 10.1109/TSG.2024.3373258
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10459248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10459248</ieee_id><sourcerecordid>3044622521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9ff1cb8e46cc4c2708ae4551553b0e5e02dd8bd282534d21076caf0c7a51a7843</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EElXpzsBgiTnFn_kYqwKlUgoDYUOyXOcCKcEOdoLEvydRKsQtd8Pz3p0ehC4pWVJKspviebNkhIkl5wlnMj1BM5qJLOIkpqd_s-TnaBHCgQzFOY9ZNkOvK7zrm66OCh0-8C1Ai3PQ3tb2Da_a1jtt3nHlPH50Ntrazveh_gacO13inbN15_yIumpa0zYwxppaWwPhAp1VugmwOPY5erm_K9YPUf602a5XeWSYkF2UVRU1-xREbIwwLCGpBiEllZLvCUggrCzTfclSJrkoGSVJbHRFTKIl1Ukq-BxdT3uHf796CJ06uN7b4aTiRIiYMcnoQJGJMt6F4KFSra8_tf9RlKhRoxo0qlGjOmocIldTpAaAf7iQGRMp_wWlPW0-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044622521</pqid></control><display><type>article</type><title>A Multi-Task Deep Learning Approach for Non-Intrusive Load Monitoring of Multiple Appliances</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dash, Suryalok ; Sahoo, N. C.</creator><creatorcontrib>Dash, Suryalok ; Sahoo, N. C.</creatorcontrib><description>This letter proposes a novel deep learning-based multi-task approach for non-intrusive monitoring of home appliances-the first of its kind-where a network can simultaneously estimate the states and disaggregate energies of multiple appliances. An attention-powered encoder-decoder network, comprising a convolutional layer and a long short-term memory, is deployed for the above tasks. Test results from two real-world datasets demonstrate the approach's feasibility, showcasing superior performance and reduced memory requirements.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2024.3373258</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>attention network ; Buildings ; Data aggregation ; Deep learning ; Encoders-Decoders ; energy disaggregation ; Home appliances ; Household appliances ; Load monitoring ; Long short term memory ; Monitoring ; Multitasking ; Non-intrusive appliance load monitoring ; Task analysis ; Windows</subject><ispartof>IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3337-3340</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9ff1cb8e46cc4c2708ae4551553b0e5e02dd8bd282534d21076caf0c7a51a7843</cites><orcidid>0000-0002-5374-9053 ; 0000-0001-7626-9821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10459248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dash, Suryalok</creatorcontrib><creatorcontrib>Sahoo, N. C.</creatorcontrib><title>A Multi-Task Deep Learning Approach for Non-Intrusive Load Monitoring of Multiple Appliances</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This letter proposes a novel deep learning-based multi-task approach for non-intrusive monitoring of home appliances-the first of its kind-where a network can simultaneously estimate the states and disaggregate energies of multiple appliances. An attention-powered encoder-decoder network, comprising a convolutional layer and a long short-term memory, is deployed for the above tasks. Test results from two real-world datasets demonstrate the approach's feasibility, showcasing superior performance and reduced memory requirements.</description><subject>attention network</subject><subject>Buildings</subject><subject>Data aggregation</subject><subject>Deep learning</subject><subject>Encoders-Decoders</subject><subject>energy disaggregation</subject><subject>Home appliances</subject><subject>Household appliances</subject><subject>Load monitoring</subject><subject>Long short term memory</subject><subject>Monitoring</subject><subject>Multitasking</subject><subject>Non-intrusive appliance load monitoring</subject><subject>Task analysis</subject><subject>Windows</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EElXpzsBgiTnFn_kYqwKlUgoDYUOyXOcCKcEOdoLEvydRKsQtd8Pz3p0ehC4pWVJKspviebNkhIkl5wlnMj1BM5qJLOIkpqd_s-TnaBHCgQzFOY9ZNkOvK7zrm66OCh0-8C1Ai3PQ3tb2Da_a1jtt3nHlPH50Ntrazveh_gacO13inbN15_yIumpa0zYwxppaWwPhAp1VugmwOPY5erm_K9YPUf602a5XeWSYkF2UVRU1-xREbIwwLCGpBiEllZLvCUggrCzTfclSJrkoGSVJbHRFTKIl1Ukq-BxdT3uHf796CJ06uN7b4aTiRIiYMcnoQJGJMt6F4KFSra8_tf9RlKhRoxo0qlGjOmocIldTpAaAf7iQGRMp_wWlPW0-</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Dash, Suryalok</creator><creator>Sahoo, N. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5374-9053</orcidid><orcidid>https://orcid.org/0000-0001-7626-9821</orcidid></search><sort><creationdate>20240501</creationdate><title>A Multi-Task Deep Learning Approach for Non-Intrusive Load Monitoring of Multiple Appliances</title><author>Dash, Suryalok ; Sahoo, N. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9ff1cb8e46cc4c2708ae4551553b0e5e02dd8bd282534d21076caf0c7a51a7843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>attention network</topic><topic>Buildings</topic><topic>Data aggregation</topic><topic>Deep learning</topic><topic>Encoders-Decoders</topic><topic>energy disaggregation</topic><topic>Home appliances</topic><topic>Household appliances</topic><topic>Load monitoring</topic><topic>Long short term memory</topic><topic>Monitoring</topic><topic>Multitasking</topic><topic>Non-intrusive appliance load monitoring</topic><topic>Task analysis</topic><topic>Windows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dash, Suryalok</creatorcontrib><creatorcontrib>Sahoo, N. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dash, Suryalok</au><au>Sahoo, N. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Task Deep Learning Approach for Non-Intrusive Load Monitoring of Multiple Appliances</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>3337</spage><epage>3340</epage><pages>3337-3340</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This letter proposes a novel deep learning-based multi-task approach for non-intrusive monitoring of home appliances-the first of its kind-where a network can simultaneously estimate the states and disaggregate energies of multiple appliances. An attention-powered encoder-decoder network, comprising a convolutional layer and a long short-term memory, is deployed for the above tasks. Test results from two real-world datasets demonstrate the approach's feasibility, showcasing superior performance and reduced memory requirements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2024.3373258</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5374-9053</orcidid><orcidid>https://orcid.org/0000-0001-7626-9821</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2024-05, Vol.15 (3), p.3337-3340
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_10459248
source IEEE Electronic Library (IEL) Journals
subjects attention network
Buildings
Data aggregation
Deep learning
Encoders-Decoders
energy disaggregation
Home appliances
Household appliances
Load monitoring
Long short term memory
Monitoring
Multitasking
Non-intrusive appliance load monitoring
Task analysis
Windows
title A Multi-Task Deep Learning Approach for Non-Intrusive Load Monitoring of Multiple Appliances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Task%20Deep%20Learning%20Approach%20for%20Non-Intrusive%20Load%20Monitoring%20of%20Multiple%20Appliances&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Dash,%20Suryalok&rft.date=2024-05-01&rft.volume=15&rft.issue=3&rft.spage=3337&rft.epage=3340&rft.pages=3337-3340&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2024.3373258&rft_dat=%3Cproquest_ieee_%3E3044622521%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-9ff1cb8e46cc4c2708ae4551553b0e5e02dd8bd282534d21076caf0c7a51a7843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044622521&rft_id=info:pmid/&rft_ieee_id=10459248&rfr_iscdi=true