Loading…

Robust Estimation of Landslide Displacement from Multi-temporal UAV Photogrammetry-Derived Point Clouds

Existing algorithms based on remote sensing for landslide displacement estimation, such as C2C, C2M, DOD, and M3C2, are sensitive to errors generated in data processing, and further improving their accuracy is difficult. To address this issue, given that redundant observations may occur in landslide...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2024-03, p.1-16
Main Authors: He, Haiqing, Ming, Zaiyang, Zhang, Jianqiang, Wang, Leyang, Yang, Ronghao, Chen, Ting, Zhou, Fuyang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 16
container_issue
container_start_page 1
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume
creator He, Haiqing
Ming, Zaiyang
Zhang, Jianqiang
Wang, Leyang
Yang, Ronghao
Chen, Ting
Zhou, Fuyang
description Existing algorithms based on remote sensing for landslide displacement estimation, such as C2C, C2M, DOD, and M3C2, are sensitive to errors generated in data processing, and further improving their accuracy is difficult. To address this issue, given that redundant observations may occur in landslide monitoring, we proposed a robust estimation method of landslide displacement from multi-temporal unmanned aerial vehicle (UAV) photogrammetry-derived point clouds. The proposed method first establishes the relevant graph to manage the trajectory of error propagation for landslide displacement estimation for all possible paths. Two modules, namely, intra- and inter-estimates, are explored to reduce the impact of outliers and high surface roughness in point clouds derived by UAV photogrammetry. Individually, the intra-estimate operation is used to calculate landslide displacement between two temporal point clouds by robust estimation considering outlier constraint, and the inter-estimate operation is used to obtain the optimal calculation of landslide displacement by minimizing a given objective function using IGG robust estimation proposed by the Institute of Geodesy and Geophysics at the Chinese Academy of Sciences. Experimental results show that the proposed method is significantly superior to conventional methods such as C2C, C2M, and M3C2, with an accuracy improvement of at least 8%.
doi_str_mv 10.1109/JSTARS.2024.3373505
format article
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10460111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460111</ieee_id><sourcerecordid>10460111</sourcerecordid><originalsourceid>FETCH-LOGICAL-i665-de62dfedeec15d3688e495550566f48d19c79ec8718d112b25650d6d7663c4803</originalsourceid><addsrcrecordid>eNotj8tOwzAUBb0AiVL4Alj4B1J840fiZZSWl4Ko2sC2SuObYpTUke0i9e-JBKs5mznSEHIHbAHA9MPrti4220XKUrHgPOOSyQsyA811AoKJK3IdwjdjKs00n5HDxu1PIdJViHZoonVH6jpaNUcTemuQLm0Y-6bFAY-Rdt4N9O3UR5tEHEbnm55-FJ90_eWiO_hmGDD6c7JEb3_Q0LWzk1T27mTCDbnsmj7g7T_npH5c1eVzUr0_vZRFlVilZGJQpaZDg9iCNFzlOQot5ZSgVCdyA7rNNLZ5BtOGdJ9KJZlRJlOKtyJnfE7u_24tIu5GPzX58w6YUAwA-C_ot1Vu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust Estimation of Landslide Displacement from Multi-temporal UAV Photogrammetry-Derived Point Clouds</title><source>Alma/SFX Local Collection</source><creator>He, Haiqing ; Ming, Zaiyang ; Zhang, Jianqiang ; Wang, Leyang ; Yang, Ronghao ; Chen, Ting ; Zhou, Fuyang</creator><creatorcontrib>He, Haiqing ; Ming, Zaiyang ; Zhang, Jianqiang ; Wang, Leyang ; Yang, Ronghao ; Chen, Ting ; Zhou, Fuyang</creatorcontrib><description>Existing algorithms based on remote sensing for landslide displacement estimation, such as C2C, C2M, DOD, and M3C2, are sensitive to errors generated in data processing, and further improving their accuracy is difficult. To address this issue, given that redundant observations may occur in landslide monitoring, we proposed a robust estimation method of landslide displacement from multi-temporal unmanned aerial vehicle (UAV) photogrammetry-derived point clouds. The proposed method first establishes the relevant graph to manage the trajectory of error propagation for landslide displacement estimation for all possible paths. Two modules, namely, intra- and inter-estimates, are explored to reduce the impact of outliers and high surface roughness in point clouds derived by UAV photogrammetry. Individually, the intra-estimate operation is used to calculate landslide displacement between two temporal point clouds by robust estimation considering outlier constraint, and the inter-estimate operation is used to obtain the optimal calculation of landslide displacement by minimizing a given objective function using IGG robust estimation proposed by the Institute of Geodesy and Geophysics at the Chinese Academy of Sciences. Experimental results show that the proposed method is significantly superior to conventional methods such as C2C, C2M, and M3C2, with an accuracy improvement of at least 8%.</description><identifier>ISSN: 1939-1404</identifier><identifier>DOI: 10.1109/JSTARS.2024.3373505</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous aerial vehicles ; error propagation ; Estimation ; intra- and inter-estimates ; Landslide displacement ; Point cloud compression ; robust estimation ; Rough surfaces ; Surface morphology ; Surface roughness ; Terrain factors ; unmanned aerial vehicle</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024-03, p.1-16</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Haiqing</creatorcontrib><creatorcontrib>Ming, Zaiyang</creatorcontrib><creatorcontrib>Zhang, Jianqiang</creatorcontrib><creatorcontrib>Wang, Leyang</creatorcontrib><creatorcontrib>Yang, Ronghao</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Zhou, Fuyang</creatorcontrib><title>Robust Estimation of Landslide Displacement from Multi-temporal UAV Photogrammetry-Derived Point Clouds</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Existing algorithms based on remote sensing for landslide displacement estimation, such as C2C, C2M, DOD, and M3C2, are sensitive to errors generated in data processing, and further improving their accuracy is difficult. To address this issue, given that redundant observations may occur in landslide monitoring, we proposed a robust estimation method of landslide displacement from multi-temporal unmanned aerial vehicle (UAV) photogrammetry-derived point clouds. The proposed method first establishes the relevant graph to manage the trajectory of error propagation for landslide displacement estimation for all possible paths. Two modules, namely, intra- and inter-estimates, are explored to reduce the impact of outliers and high surface roughness in point clouds derived by UAV photogrammetry. Individually, the intra-estimate operation is used to calculate landslide displacement between two temporal point clouds by robust estimation considering outlier constraint, and the inter-estimate operation is used to obtain the optimal calculation of landslide displacement by minimizing a given objective function using IGG robust estimation proposed by the Institute of Geodesy and Geophysics at the Chinese Academy of Sciences. Experimental results show that the proposed method is significantly superior to conventional methods such as C2C, C2M, and M3C2, with an accuracy improvement of at least 8%.</description><subject>Autonomous aerial vehicles</subject><subject>error propagation</subject><subject>Estimation</subject><subject>intra- and inter-estimates</subject><subject>Landslide displacement</subject><subject>Point cloud compression</subject><subject>robust estimation</subject><subject>Rough surfaces</subject><subject>Surface morphology</subject><subject>Surface roughness</subject><subject>Terrain factors</subject><subject>unmanned aerial vehicle</subject><issn>1939-1404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNotj8tOwzAUBb0AiVL4Alj4B1J840fiZZSWl4Ko2sC2SuObYpTUke0i9e-JBKs5mznSEHIHbAHA9MPrti4220XKUrHgPOOSyQsyA811AoKJK3IdwjdjKs00n5HDxu1PIdJViHZoonVH6jpaNUcTemuQLm0Y-6bFAY-Rdt4N9O3UR5tEHEbnm55-FJ90_eWiO_hmGDD6c7JEb3_Q0LWzk1T27mTCDbnsmj7g7T_npH5c1eVzUr0_vZRFlVilZGJQpaZDg9iCNFzlOQot5ZSgVCdyA7rNNLZ5BtOGdJ9KJZlRJlOKtyJnfE7u_24tIu5GPzX58w6YUAwA-C_ot1Vu</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>He, Haiqing</creator><creator>Ming, Zaiyang</creator><creator>Zhang, Jianqiang</creator><creator>Wang, Leyang</creator><creator>Yang, Ronghao</creator><creator>Chen, Ting</creator><creator>Zhou, Fuyang</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>20240304</creationdate><title>Robust Estimation of Landslide Displacement from Multi-temporal UAV Photogrammetry-Derived Point Clouds</title><author>He, Haiqing ; Ming, Zaiyang ; Zhang, Jianqiang ; Wang, Leyang ; Yang, Ronghao ; Chen, Ting ; Zhou, Fuyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i665-de62dfedeec15d3688e495550566f48d19c79ec8718d112b25650d6d7663c4803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous aerial vehicles</topic><topic>error propagation</topic><topic>Estimation</topic><topic>intra- and inter-estimates</topic><topic>Landslide displacement</topic><topic>Point cloud compression</topic><topic>robust estimation</topic><topic>Rough surfaces</topic><topic>Surface morphology</topic><topic>Surface roughness</topic><topic>Terrain factors</topic><topic>unmanned aerial vehicle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Haiqing</creatorcontrib><creatorcontrib>Ming, Zaiyang</creatorcontrib><creatorcontrib>Zhang, Jianqiang</creatorcontrib><creatorcontrib>Wang, Leyang</creatorcontrib><creatorcontrib>Yang, Ronghao</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Zhou, Fuyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Haiqing</au><au>Ming, Zaiyang</au><au>Zhang, Jianqiang</au><au>Wang, Leyang</au><au>Yang, Ronghao</au><au>Chen, Ting</au><au>Zhou, Fuyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Estimation of Landslide Displacement from Multi-temporal UAV Photogrammetry-Derived Point Clouds</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024-03-04</date><risdate>2024</risdate><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1939-1404</issn><coden>IJSTHZ</coden><abstract>Existing algorithms based on remote sensing for landslide displacement estimation, such as C2C, C2M, DOD, and M3C2, are sensitive to errors generated in data processing, and further improving their accuracy is difficult. To address this issue, given that redundant observations may occur in landslide monitoring, we proposed a robust estimation method of landslide displacement from multi-temporal unmanned aerial vehicle (UAV) photogrammetry-derived point clouds. The proposed method first establishes the relevant graph to manage the trajectory of error propagation for landslide displacement estimation for all possible paths. Two modules, namely, intra- and inter-estimates, are explored to reduce the impact of outliers and high surface roughness in point clouds derived by UAV photogrammetry. Individually, the intra-estimate operation is used to calculate landslide displacement between two temporal point clouds by robust estimation considering outlier constraint, and the inter-estimate operation is used to obtain the optimal calculation of landslide displacement by minimizing a given objective function using IGG robust estimation proposed by the Institute of Geodesy and Geophysics at the Chinese Academy of Sciences. Experimental results show that the proposed method is significantly superior to conventional methods such as C2C, C2M, and M3C2, with an accuracy improvement of at least 8%.</abstract><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3373505</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024-03, p.1-16
issn 1939-1404
language eng
recordid cdi_ieee_primary_10460111
source Alma/SFX Local Collection
subjects Autonomous aerial vehicles
error propagation
Estimation
intra- and inter-estimates
Landslide displacement
Point cloud compression
robust estimation
Rough surfaces
Surface morphology
Surface roughness
Terrain factors
unmanned aerial vehicle
title Robust Estimation of Landslide Displacement from Multi-temporal UAV Photogrammetry-Derived Point Clouds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Estimation%20of%20Landslide%20Displacement%20from%20Multi-temporal%20UAV%20Photogrammetry-Derived%20Point%20Clouds&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=He,%20Haiqing&rft.date=2024-03-04&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1939-1404&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3373505&rft_dat=%3Cieee%3E10460111%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i665-de62dfedeec15d3688e495550566f48d19c79ec8718d112b25650d6d7663c4803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10460111&rfr_iscdi=true