Loading…

Investigation of Coupling Mechanisms for Efficient High Power and Low Phase Noise E-Band Quadrature VCOs in 130nm SiGe

This article compares two SiGe Colpitts quadrature voltage-controlled oscillators (QVCO) with different coupling techniques in the low E-Band, intended to be used as signal sources for push-push frequency doublers. The first QVCO is based on a cross-coupled tail-current topology, while the second is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of microwaves 2024-04, Vol.4 (2), p.264-276
Main Authors: Starke, David, Thomas, Sven, Bredendiek, Christian, Aufinger, Klaus, Pohl, Nils
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c325t-e3fdfd5566206b1416cebfd6d64fc81725d5b936507c16535bf5dae452ed65dd3
container_end_page 276
container_issue 2
container_start_page 264
container_title IEEE journal of microwaves
container_volume 4
creator Starke, David
Thomas, Sven
Bredendiek, Christian
Aufinger, Klaus
Pohl, Nils
description This article compares two SiGe Colpitts quadrature voltage-controlled oscillators (QVCO) with different coupling techniques in the low E-Band, intended to be used as signal sources for push-push frequency doublers. The first QVCO is based on a cross-coupled tail-current topology, while the second is based on a fundamental active coupling network. The cross-coupled QVCO has a center frequency of 64.3 GHz and a bandwidth of 2.5 GHz. This circuit realization provides up to 12.2 dBm output power per channel and has a power consumption of 385 mW, resulting in a dc-to-RF efficiency of 8.6%. The phase noise of this oscillator at 1 MHz offset frequency is as low as −105 dBc/Hz. The fundamentally coupled QVCO has a center frequency of 67 GHz with a bandwidth of 3.9 GHz. It provides 13.1 dBm output power per channel while consuming 410 mW of power, resulting in a dc-to-RF efficiency of 9.9%. The oscillator's phase noise at 1 MHz offset frequency is as low as −105.2 dBc/Hz. In addition to the presented circuits, this article introduces a method to measure the relative phase error of quadrature signals utilizing a vector network analyzer. This method is verified with measurements of the developed QVCOs.
doi_str_mv 10.1109/JMW.2024.3370395
format article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10471532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10471532</ieee_id><doaj_id>oai_doaj_org_article_7ac58f6b6da94a1fa432b7246770e3db</doaj_id><sourcerecordid>oai_doaj_org_article_7ac58f6b6da94a1fa432b7246770e3db</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e3fdfd5566206b1416cebfd6d64fc81725d5b936507c16535bf5dae452ed65dd3</originalsourceid><addsrcrecordid>eNpNkU1PAjEQhjdGEwly9-Chf2CxH9vu7lEJAgYE49ex6bZTKIEtaReI_14QYrzMTN7M-1yeJLkluEsILu-fJ19dimnWZSzHrOQXSYuKkqYFK4rLf_d10olxiTGmnFDKylayG9U7iI2bq8b5GnmLen67Wbl6jiagF6p2cR2R9QH1rXXaQd2goZsv0MzvISBVGzT2ezRbqAjoxbvD7KePx_h1q0xQzTYA-uxNI3I1IgzXa_TmBnCTXFm1itA573by8dR_7w3T8XQw6j2MU80ob1Jg1ljDuRAUi4pkRGiorBFGZFYXJKfc8KpkguNcE8EZryw3CjJOwQhuDGsnoxPXeLWUm-DWKnxLr5z8DXyYSxUap1cgc6V5YUUljCozRazKGK1ymok8x8BMdWDhE0sHH2MA-8cjWB41yIMGedQgzxoOlbtTxQHAv_csJ5xR9gPkT4MS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigation of Coupling Mechanisms for Efficient High Power and Low Phase Noise E-Band Quadrature VCOs in 130nm SiGe</title><source>Alma/SFX Local Collection</source><creator>Starke, David ; Thomas, Sven ; Bredendiek, Christian ; Aufinger, Klaus ; Pohl, Nils</creator><creatorcontrib>Starke, David ; Thomas, Sven ; Bredendiek, Christian ; Aufinger, Klaus ; Pohl, Nils</creatorcontrib><description>This article compares two SiGe Colpitts quadrature voltage-controlled oscillators (QVCO) with different coupling techniques in the low E-Band, intended to be used as signal sources for push-push frequency doublers. The first QVCO is based on a cross-coupled tail-current topology, while the second is based on a fundamental active coupling network. The cross-coupled QVCO has a center frequency of 64.3 GHz and a bandwidth of 2.5 GHz. This circuit realization provides up to 12.2 dBm output power per channel and has a power consumption of 385 mW, resulting in a dc-to-RF efficiency of 8.6%. The phase noise of this oscillator at 1 MHz offset frequency is as low as −105 dBc/Hz. The fundamentally coupled QVCO has a center frequency of 67 GHz with a bandwidth of 3.9 GHz. It provides 13.1 dBm output power per channel while consuming 410 mW of power, resulting in a dc-to-RF efficiency of 9.9%. The oscillator's phase noise at 1 MHz offset frequency is as low as −105.2 dBc/Hz. In addition to the presented circuits, this article introduces a method to measure the relative phase error of quadrature signals utilizing a vector network analyzer. This method is verified with measurements of the developed QVCOs.</description><identifier>ISSN: 2692-8388</identifier><identifier>EISSN: 2692-8388</identifier><identifier>DOI: 10.1109/JMW.2024.3370395</identifier><identifier>CODEN: IJMEMX</identifier><language>eng</language><publisher>IEEE</publisher><subject>BiCMOS ; BiCMOS integrated circuits ; coupled oscillators ; cross-coupled ; Harmonic analysis ; microwave and millimeter wave oscillators ; millimeter-wave ; MMIC ; MMICs ; Oscillators ; quadrature ; QVCO ; SiGe BiCMOS ; Silicon germanium ; voltage-controlled oscillator (VCO) ; Voltage-controlled oscillators</subject><ispartof>IEEE journal of microwaves, 2024-04, Vol.4 (2), p.264-276</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-e3fdfd5566206b1416cebfd6d64fc81725d5b936507c16535bf5dae452ed65dd3</cites><orcidid>0000-0001-5362-638X ; 0000-0002-7884-7987 ; 0000-0002-4093-3468 ; 0000-0002-2160-2284 ; 0000-0003-3809-8114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Starke, David</creatorcontrib><creatorcontrib>Thomas, Sven</creatorcontrib><creatorcontrib>Bredendiek, Christian</creatorcontrib><creatorcontrib>Aufinger, Klaus</creatorcontrib><creatorcontrib>Pohl, Nils</creatorcontrib><title>Investigation of Coupling Mechanisms for Efficient High Power and Low Phase Noise E-Band Quadrature VCOs in 130nm SiGe</title><title>IEEE journal of microwaves</title><addtitle>JMW</addtitle><description>This article compares two SiGe Colpitts quadrature voltage-controlled oscillators (QVCO) with different coupling techniques in the low E-Band, intended to be used as signal sources for push-push frequency doublers. The first QVCO is based on a cross-coupled tail-current topology, while the second is based on a fundamental active coupling network. The cross-coupled QVCO has a center frequency of 64.3 GHz and a bandwidth of 2.5 GHz. This circuit realization provides up to 12.2 dBm output power per channel and has a power consumption of 385 mW, resulting in a dc-to-RF efficiency of 8.6%. The phase noise of this oscillator at 1 MHz offset frequency is as low as −105 dBc/Hz. The fundamentally coupled QVCO has a center frequency of 67 GHz with a bandwidth of 3.9 GHz. It provides 13.1 dBm output power per channel while consuming 410 mW of power, resulting in a dc-to-RF efficiency of 9.9%. The oscillator's phase noise at 1 MHz offset frequency is as low as −105.2 dBc/Hz. In addition to the presented circuits, this article introduces a method to measure the relative phase error of quadrature signals utilizing a vector network analyzer. This method is verified with measurements of the developed QVCOs.</description><subject>BiCMOS</subject><subject>BiCMOS integrated circuits</subject><subject>coupled oscillators</subject><subject>cross-coupled</subject><subject>Harmonic analysis</subject><subject>microwave and millimeter wave oscillators</subject><subject>millimeter-wave</subject><subject>MMIC</subject><subject>MMICs</subject><subject>Oscillators</subject><subject>quadrature</subject><subject>QVCO</subject><subject>SiGe BiCMOS</subject><subject>Silicon germanium</subject><subject>voltage-controlled oscillator (VCO)</subject><subject>Voltage-controlled oscillators</subject><issn>2692-8388</issn><issn>2692-8388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PAjEQhjdGEwly9-Chf2CxH9vu7lEJAgYE49ex6bZTKIEtaReI_14QYrzMTN7M-1yeJLkluEsILu-fJ19dimnWZSzHrOQXSYuKkqYFK4rLf_d10olxiTGmnFDKylayG9U7iI2bq8b5GnmLen67Wbl6jiagF6p2cR2R9QH1rXXaQd2goZsv0MzvISBVGzT2ezRbqAjoxbvD7KePx_h1q0xQzTYA-uxNI3I1IgzXa_TmBnCTXFm1itA573by8dR_7w3T8XQw6j2MU80ob1Jg1ljDuRAUi4pkRGiorBFGZFYXJKfc8KpkguNcE8EZryw3CjJOwQhuDGsnoxPXeLWUm-DWKnxLr5z8DXyYSxUap1cgc6V5YUUljCozRazKGK1ymok8x8BMdWDhE0sHH2MA-8cjWB41yIMGedQgzxoOlbtTxQHAv_csJ5xR9gPkT4MS</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Starke, David</creator><creator>Thomas, Sven</creator><creator>Bredendiek, Christian</creator><creator>Aufinger, Klaus</creator><creator>Pohl, Nils</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5362-638X</orcidid><orcidid>https://orcid.org/0000-0002-7884-7987</orcidid><orcidid>https://orcid.org/0000-0002-4093-3468</orcidid><orcidid>https://orcid.org/0000-0002-2160-2284</orcidid><orcidid>https://orcid.org/0000-0003-3809-8114</orcidid></search><sort><creationdate>20240401</creationdate><title>Investigation of Coupling Mechanisms for Efficient High Power and Low Phase Noise E-Band Quadrature VCOs in 130nm SiGe</title><author>Starke, David ; Thomas, Sven ; Bredendiek, Christian ; Aufinger, Klaus ; Pohl, Nils</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e3fdfd5566206b1416cebfd6d64fc81725d5b936507c16535bf5dae452ed65dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BiCMOS</topic><topic>BiCMOS integrated circuits</topic><topic>coupled oscillators</topic><topic>cross-coupled</topic><topic>Harmonic analysis</topic><topic>microwave and millimeter wave oscillators</topic><topic>millimeter-wave</topic><topic>MMIC</topic><topic>MMICs</topic><topic>Oscillators</topic><topic>quadrature</topic><topic>QVCO</topic><topic>SiGe BiCMOS</topic><topic>Silicon germanium</topic><topic>voltage-controlled oscillator (VCO)</topic><topic>Voltage-controlled oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starke, David</creatorcontrib><creatorcontrib>Thomas, Sven</creatorcontrib><creatorcontrib>Bredendiek, Christian</creatorcontrib><creatorcontrib>Aufinger, Klaus</creatorcontrib><creatorcontrib>Pohl, Nils</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of microwaves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starke, David</au><au>Thomas, Sven</au><au>Bredendiek, Christian</au><au>Aufinger, Klaus</au><au>Pohl, Nils</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Coupling Mechanisms for Efficient High Power and Low Phase Noise E-Band Quadrature VCOs in 130nm SiGe</atitle><jtitle>IEEE journal of microwaves</jtitle><stitle>JMW</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>4</volume><issue>2</issue><spage>264</spage><epage>276</epage><pages>264-276</pages><issn>2692-8388</issn><eissn>2692-8388</eissn><coden>IJMEMX</coden><abstract>This article compares two SiGe Colpitts quadrature voltage-controlled oscillators (QVCO) with different coupling techniques in the low E-Band, intended to be used as signal sources for push-push frequency doublers. The first QVCO is based on a cross-coupled tail-current topology, while the second is based on a fundamental active coupling network. The cross-coupled QVCO has a center frequency of 64.3 GHz and a bandwidth of 2.5 GHz. This circuit realization provides up to 12.2 dBm output power per channel and has a power consumption of 385 mW, resulting in a dc-to-RF efficiency of 8.6%. The phase noise of this oscillator at 1 MHz offset frequency is as low as −105 dBc/Hz. The fundamentally coupled QVCO has a center frequency of 67 GHz with a bandwidth of 3.9 GHz. It provides 13.1 dBm output power per channel while consuming 410 mW of power, resulting in a dc-to-RF efficiency of 9.9%. The oscillator's phase noise at 1 MHz offset frequency is as low as −105.2 dBc/Hz. In addition to the presented circuits, this article introduces a method to measure the relative phase error of quadrature signals utilizing a vector network analyzer. This method is verified with measurements of the developed QVCOs.</abstract><pub>IEEE</pub><doi>10.1109/JMW.2024.3370395</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5362-638X</orcidid><orcidid>https://orcid.org/0000-0002-7884-7987</orcidid><orcidid>https://orcid.org/0000-0002-4093-3468</orcidid><orcidid>https://orcid.org/0000-0002-2160-2284</orcidid><orcidid>https://orcid.org/0000-0003-3809-8114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2692-8388
ispartof IEEE journal of microwaves, 2024-04, Vol.4 (2), p.264-276
issn 2692-8388
2692-8388
language eng
recordid cdi_ieee_primary_10471532
source Alma/SFX Local Collection
subjects BiCMOS
BiCMOS integrated circuits
coupled oscillators
cross-coupled
Harmonic analysis
microwave and millimeter wave oscillators
millimeter-wave
MMIC
MMICs
Oscillators
quadrature
QVCO
SiGe BiCMOS
Silicon germanium
voltage-controlled oscillator (VCO)
Voltage-controlled oscillators
title Investigation of Coupling Mechanisms for Efficient High Power and Low Phase Noise E-Band Quadrature VCOs in 130nm SiGe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Coupling%20Mechanisms%20for%20Efficient%20High%20Power%20and%20Low%20Phase%20Noise%20E-Band%20Quadrature%20VCOs%20in%20130nm%20SiGe&rft.jtitle=IEEE%20journal%20of%20microwaves&rft.au=Starke,%20David&rft.date=2024-04-01&rft.volume=4&rft.issue=2&rft.spage=264&rft.epage=276&rft.pages=264-276&rft.issn=2692-8388&rft.eissn=2692-8388&rft.coden=IJMEMX&rft_id=info:doi/10.1109/JMW.2024.3370395&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_7ac58f6b6da94a1fa432b7246770e3db%3C/doaj_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-e3fdfd5566206b1416cebfd6d64fc81725d5b936507c16535bf5dae452ed65dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10471532&rfr_iscdi=true