Loading…

CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement

Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between qu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Main Authors: Hu, Boni, Chen, Lin, Chen, Runjian, Bu, Shuhui, Han, Pengcheng, Li, Haowei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Hu, Boni
Chen, Lin
Chen, Runjian
Bu, Shuhui
Han, Pengcheng
Li, Haowei
description Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multistage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code, and trained models are publicly available on https://github.com/npupilab/CurriculumLoc .
doi_str_mv 10.1109/TGRS.2024.3380191
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10477445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10477445</ieee_id><sourcerecordid>3031392989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOKcfQPCh4HNnLkmb1jeZcwoTYZvPIU2vW0abaNo-6Ke3ZXvw5Q6O3_-O-xFyC3QGQPOH7XK9mTHKxIzzjEIOZ2QCSZLFNBXinEyGURqzLGeX5KptD5SCSEBOyGbeh2BNX_fNypvHaOH22hnrdtE8-LaNn32jrYuW6GtvdG1_dWe9i7b74PvdPnrv6862nd5htMbKOmzQddfkotJ1izenPiWfL4vt_DVefSzf5k-r2DCRdvFQJGqpC1NgZQwwAIHSUMZ1Kqg2sqpEyXReUkhLNNzoqmRSYiKKBNOy4FNyf9z7Ffx3j22nDr4PbjipOOXAc5Zn-UDBkTLjQwEr9RVso8OPAqpGd2p0p0Z36uRuyNwdMxYR__FCSiES_geE52zU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031392989</pqid></control><display><type>article</type><title>CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hu, Boni ; Chen, Lin ; Chen, Runjian ; Bu, Shuhui ; Han, Pengcheng ; Li, Haowei</creator><creatorcontrib>Hu, Boni ; Chen, Lin ; Chen, Runjian ; Bu, Shuhui ; Han, Pengcheng ; Li, Haowei</creatorcontrib><description>Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multistage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code, and trained models are publicly available on https://github.com/npupilab/CurriculumLoc .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3380191</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cross-domain geolocalization ; Curriculum ; Datasets ; Design ; Feature extraction ; Geology ; geometric verification ; Location awareness ; multistage geolocation refinement ; Pipeline design ; Seasonal variation ; Seasonal variations ; semantic attention ; Semantics ; Training ; Transformers ; visual localization ; Visualization</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3</cites><orcidid>0000-0002-9853-8313 ; 0009-0001-4984-164X ; 0000-0003-0519-496X ; 0000-0001-8330-9369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10477445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hu, Boni</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Chen, Runjian</creatorcontrib><creatorcontrib>Bu, Shuhui</creatorcontrib><creatorcontrib>Han, Pengcheng</creatorcontrib><creatorcontrib>Li, Haowei</creatorcontrib><title>CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multistage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code, and trained models are publicly available on https://github.com/npupilab/CurriculumLoc .</description><subject>Cross-domain geolocalization</subject><subject>Curriculum</subject><subject>Datasets</subject><subject>Design</subject><subject>Feature extraction</subject><subject>Geology</subject><subject>geometric verification</subject><subject>Location awareness</subject><subject>multistage geolocation refinement</subject><subject>Pipeline design</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>semantic attention</subject><subject>Semantics</subject><subject>Training</subject><subject>Transformers</subject><subject>visual localization</subject><subject>Visualization</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAQx4MoOKcfQPCh4HNnLkmb1jeZcwoTYZvPIU2vW0abaNo-6Ke3ZXvw5Q6O3_-O-xFyC3QGQPOH7XK9mTHKxIzzjEIOZ2QCSZLFNBXinEyGURqzLGeX5KptD5SCSEBOyGbeh2BNX_fNypvHaOH22hnrdtE8-LaNn32jrYuW6GtvdG1_dWe9i7b74PvdPnrv6862nd5htMbKOmzQddfkotJ1izenPiWfL4vt_DVefSzf5k-r2DCRdvFQJGqpC1NgZQwwAIHSUMZ1Kqg2sqpEyXReUkhLNNzoqmRSYiKKBNOy4FNyf9z7Ffx3j22nDr4PbjipOOXAc5Zn-UDBkTLjQwEr9RVso8OPAqpGd2p0p0Z36uRuyNwdMxYR__FCSiES_geE52zU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hu, Boni</creator><creator>Chen, Lin</creator><creator>Chen, Runjian</creator><creator>Bu, Shuhui</creator><creator>Han, Pengcheng</creator><creator>Li, Haowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9853-8313</orcidid><orcidid>https://orcid.org/0009-0001-4984-164X</orcidid><orcidid>https://orcid.org/0000-0003-0519-496X</orcidid><orcidid>https://orcid.org/0000-0001-8330-9369</orcidid></search><sort><creationdate>2024</creationdate><title>CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement</title><author>Hu, Boni ; Chen, Lin ; Chen, Runjian ; Bu, Shuhui ; Han, Pengcheng ; Li, Haowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cross-domain geolocalization</topic><topic>Curriculum</topic><topic>Datasets</topic><topic>Design</topic><topic>Feature extraction</topic><topic>Geology</topic><topic>geometric verification</topic><topic>Location awareness</topic><topic>multistage geolocation refinement</topic><topic>Pipeline design</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>semantic attention</topic><topic>Semantics</topic><topic>Training</topic><topic>Transformers</topic><topic>visual localization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Boni</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Chen, Runjian</creatorcontrib><creatorcontrib>Bu, Shuhui</creatorcontrib><creatorcontrib>Han, Pengcheng</creatorcontrib><creatorcontrib>Li, Haowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Boni</au><au>Chen, Lin</au><au>Chen, Runjian</au><au>Bu, Shuhui</au><au>Han, Pengcheng</au><au>Li, Haowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multistage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code, and trained models are publicly available on https://github.com/npupilab/CurriculumLoc .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3380191</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9853-8313</orcidid><orcidid>https://orcid.org/0009-0001-4984-164X</orcidid><orcidid>https://orcid.org/0000-0003-0519-496X</orcidid><orcidid>https://orcid.org/0000-0001-8330-9369</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10477445
source IEEE Electronic Library (IEL) Journals
subjects Cross-domain geolocalization
Curriculum
Datasets
Design
Feature extraction
Geology
geometric verification
Location awareness
multistage geolocation refinement
Pipeline design
Seasonal variation
Seasonal variations
semantic attention
Semantics
Training
Transformers
visual localization
Visualization
title CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CurriculumLoc:%20Enhancing%20Cross-Domain%20Geolocalization%20Through%20Multistage%20Refinement&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hu,%20Boni&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3380191&rft_dat=%3Cproquest_ieee_%3E3031392989%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031392989&rft_id=info:pmid/&rft_ieee_id=10477445&rfr_iscdi=true