Loading…
CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement
Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between qu...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3 |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Hu, Boni Chen, Lin Chen, Runjian Bu, Shuhui Han, Pengcheng Li, Haowei |
description | Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multistage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code, and trained models are publicly available on https://github.com/npupilab/CurriculumLoc . |
doi_str_mv | 10.1109/TGRS.2024.3380191 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10477445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10477445</ieee_id><sourcerecordid>3031392989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOKcfQPCh4HNnLkmb1jeZcwoTYZvPIU2vW0abaNo-6Ke3ZXvw5Q6O3_-O-xFyC3QGQPOH7XK9mTHKxIzzjEIOZ2QCSZLFNBXinEyGURqzLGeX5KptD5SCSEBOyGbeh2BNX_fNypvHaOH22hnrdtE8-LaNn32jrYuW6GtvdG1_dWe9i7b74PvdPnrv6862nd5htMbKOmzQddfkotJ1izenPiWfL4vt_DVefSzf5k-r2DCRdvFQJGqpC1NgZQwwAIHSUMZ1Kqg2sqpEyXReUkhLNNzoqmRSYiKKBNOy4FNyf9z7Ffx3j22nDr4PbjipOOXAc5Zn-UDBkTLjQwEr9RVso8OPAqpGd2p0p0Z36uRuyNwdMxYR__FCSiES_geE52zU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031392989</pqid></control><display><type>article</type><title>CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hu, Boni ; Chen, Lin ; Chen, Runjian ; Bu, Shuhui ; Han, Pengcheng ; Li, Haowei</creator><creatorcontrib>Hu, Boni ; Chen, Lin ; Chen, Runjian ; Bu, Shuhui ; Han, Pengcheng ; Li, Haowei</creatorcontrib><description>Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multistage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code, and trained models are publicly available on https://github.com/npupilab/CurriculumLoc .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3380191</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cross-domain geolocalization ; Curriculum ; Datasets ; Design ; Feature extraction ; Geology ; geometric verification ; Location awareness ; multistage geolocation refinement ; Pipeline design ; Seasonal variation ; Seasonal variations ; semantic attention ; Semantics ; Training ; Transformers ; visual localization ; Visualization</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3</cites><orcidid>0000-0002-9853-8313 ; 0009-0001-4984-164X ; 0000-0003-0519-496X ; 0000-0001-8330-9369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10477445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hu, Boni</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Chen, Runjian</creatorcontrib><creatorcontrib>Bu, Shuhui</creatorcontrib><creatorcontrib>Han, Pengcheng</creatorcontrib><creatorcontrib>Li, Haowei</creatorcontrib><title>CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multistage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code, and trained models are publicly available on https://github.com/npupilab/CurriculumLoc .</description><subject>Cross-domain geolocalization</subject><subject>Curriculum</subject><subject>Datasets</subject><subject>Design</subject><subject>Feature extraction</subject><subject>Geology</subject><subject>geometric verification</subject><subject>Location awareness</subject><subject>multistage geolocation refinement</subject><subject>Pipeline design</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>semantic attention</subject><subject>Semantics</subject><subject>Training</subject><subject>Transformers</subject><subject>visual localization</subject><subject>Visualization</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAQx4MoOKcfQPCh4HNnLkmb1jeZcwoTYZvPIU2vW0abaNo-6Ke3ZXvw5Q6O3_-O-xFyC3QGQPOH7XK9mTHKxIzzjEIOZ2QCSZLFNBXinEyGURqzLGeX5KptD5SCSEBOyGbeh2BNX_fNypvHaOH22hnrdtE8-LaNn32jrYuW6GtvdG1_dWe9i7b74PvdPnrv6862nd5htMbKOmzQddfkotJ1izenPiWfL4vt_DVefSzf5k-r2DCRdvFQJGqpC1NgZQwwAIHSUMZ1Kqg2sqpEyXReUkhLNNzoqmRSYiKKBNOy4FNyf9z7Ffx3j22nDr4PbjipOOXAc5Zn-UDBkTLjQwEr9RVso8OPAqpGd2p0p0Z36uRuyNwdMxYR__FCSiES_geE52zU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hu, Boni</creator><creator>Chen, Lin</creator><creator>Chen, Runjian</creator><creator>Bu, Shuhui</creator><creator>Han, Pengcheng</creator><creator>Li, Haowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9853-8313</orcidid><orcidid>https://orcid.org/0009-0001-4984-164X</orcidid><orcidid>https://orcid.org/0000-0003-0519-496X</orcidid><orcidid>https://orcid.org/0000-0001-8330-9369</orcidid></search><sort><creationdate>2024</creationdate><title>CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement</title><author>Hu, Boni ; Chen, Lin ; Chen, Runjian ; Bu, Shuhui ; Han, Pengcheng ; Li, Haowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cross-domain geolocalization</topic><topic>Curriculum</topic><topic>Datasets</topic><topic>Design</topic><topic>Feature extraction</topic><topic>Geology</topic><topic>geometric verification</topic><topic>Location awareness</topic><topic>multistage geolocation refinement</topic><topic>Pipeline design</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>semantic attention</topic><topic>Semantics</topic><topic>Training</topic><topic>Transformers</topic><topic>visual localization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Boni</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Chen, Runjian</creatorcontrib><creatorcontrib>Bu, Shuhui</creatorcontrib><creatorcontrib>Han, Pengcheng</creatorcontrib><creatorcontrib>Li, Haowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Boni</au><au>Chen, Lin</au><au>Chen, Runjian</au><au>Bu, Shuhui</au><au>Han, Pengcheng</au><au>Li, Haowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geotagged reference images. Existing methods, devoted to semantic features representation, evolving toward robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multistage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code, and trained models are publicly available on https://github.com/npupilab/CurriculumLoc .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3380191</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9853-8313</orcidid><orcidid>https://orcid.org/0009-0001-4984-164X</orcidid><orcidid>https://orcid.org/0000-0003-0519-496X</orcidid><orcidid>https://orcid.org/0000-0001-8330-9369</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10477445 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cross-domain geolocalization Curriculum Datasets Design Feature extraction Geology geometric verification Location awareness multistage geolocation refinement Pipeline design Seasonal variation Seasonal variations semantic attention Semantics Training Transformers visual localization Visualization |
title | CurriculumLoc: Enhancing Cross-Domain Geolocalization Through Multistage Refinement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CurriculumLoc:%20Enhancing%20Cross-Domain%20Geolocalization%20Through%20Multistage%20Refinement&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hu,%20Boni&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3380191&rft_dat=%3Cproquest_ieee_%3E3031392989%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-2467ea7abcbefcc12114e7c023a640ac7ff4d2a9d016dec3cafd277e54b5e6db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031392989&rft_id=info:pmid/&rft_ieee_id=10477445&rfr_iscdi=true |