Loading…
On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays
The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the co...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.45147-45163 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293 |
container_end_page | 45163 |
container_issue | |
container_start_page | 45147 |
container_title | IEEE access |
container_volume | 12 |
creator | Hwang, Chyi Cai, Tiao-Yang Lu, Li-Shin Wang, Tzu-Chi |
description | The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the corresponding stability switching curves in the delay parameter plane can be exactly and exhaustively determined using only algebraic computations. In the existing literature, the equation conversion has been achieved by using Rekasius substitution, bilinear substitution, or half-angle tangent substitution, and variable eliminations are carried out by using Sylvester resultant or Dixon resultant. In this paper, we first point out that since the computation of Dixon resultant involves a polynomial division, it could be beneficial in a symbolic programming environment. Then, we provide numerical evidence to compare the computational complexity of using different equation conversion methods and the subsequent resultant elimination to obtain the critical crossing frequencies from which the exact crossing frequency set can be determined. Next, based on the resultant theory, we reveal the roles of the critical crossing frequencies that play in the characterization of the delay map. Finally, we provide an efficient procedure for constructing stability charts in the delay parameter plane for linear time-invariant systems with two delays in states. To demonstrate our contributions, explanatory examples are provided along with a complete illustrative example. |
doi_str_mv | 10.1109/ACCESS.2024.3380476 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10477657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10477657</ieee_id><doaj_id>oai_doaj_org_article_2d152a4dd3914bf184187f32a0a3cd0a</doaj_id><sourcerecordid>3015050824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293</originalsourceid><addsrcrecordid>eNpNUdtq3DAQNaGFhE2-oHkQ5Nnb0c2Xx62btIFAoE7oo5DlUdaLY20lmeC_j1KHkHmYGYZz5nay7BuFLaVQf981zXXbbhkwseW8AlEWJ9kZo0Wdc8mLL5_y0-wihAMkq1JJlmfZfD-RuEfyGJA4S_5gmMeop5j_0AF7cuPx34yTWfL2BfE4TE9kdzx6p80eA4mONG4K0c8mkjbqbhiHuJBmr30MxDpP2iVEfA7k7xD35OHFkZ846iWcZ1-tHgNevMdN9nhz_dD8zu_uf902u7vccFnHnILRQkiEuoMKZYHWaKtpxXuQwvYVdEABaAEaEqi0oua0owjSMqOR1XyT3a59e6cP6uiHZ-0X5fSg_hecf1Jp1cGMqFhPJdOi73lNRWdpJWhVWs40aG765DbZ1dornZ9-EqI6uNlPaX3FgUqQUDGRUHxFGe9C8Gg_plJQb3KpVS71Jpd6lyuxLlfWgIifGKIsC1nyV5odkRk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015050824</pqid></control><display><type>article</type><title>On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays</title><source>IEEE Xplore Open Access Journals</source><creator>Hwang, Chyi ; Cai, Tiao-Yang ; Lu, Li-Shin ; Wang, Tzu-Chi</creator><creatorcontrib>Hwang, Chyi ; Cai, Tiao-Yang ; Lu, Li-Shin ; Wang, Tzu-Chi</creatorcontrib><description>The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the corresponding stability switching curves in the delay parameter plane can be exactly and exhaustively determined using only algebraic computations. In the existing literature, the equation conversion has been achieved by using Rekasius substitution, bilinear substitution, or half-angle tangent substitution, and variable eliminations are carried out by using Sylvester resultant or Dixon resultant. In this paper, we first point out that since the computation of Dixon resultant involves a polynomial division, it could be beneficial in a symbolic programming environment. Then, we provide numerical evidence to compare the computational complexity of using different equation conversion methods and the subsequent resultant elimination to obtain the critical crossing frequencies from which the exact crossing frequency set can be determined. Next, based on the resultant theory, we reveal the roles of the critical crossing frequencies that play in the characterization of the delay map. Finally, we provide an efficient procedure for constructing stability charts in the delay parameter plane for linear time-invariant systems with two delays in states. To demonstrate our contributions, explanatory examples are provided along with a complete illustrative example.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3380476</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Asymptotic stability ; bilinear transformation ; Characteristic functions ; Charts ; Computational complexity ; CTCR ; Delay ; Delays ; Dixon resultant ; Frequency conversion ; frequency sweeping ; half-angle tangent substitution ; Mathematical models ; Numerical stability ; Parameters ; Polynomials ; Programming environments ; Rekasius substitution ; Robustness (mathematics) ; Stability criteria ; stability crossing curves ; stability map ; Substitutes ; Sweeping ; Sylvester resultant ; Symbolic programming ; Time invariant systems ; Time-delay systems</subject><ispartof>IEEE access, 2024, Vol.12, p.45147-45163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293</cites><orcidid>0009-0001-7166-8089 ; 0000-0003-1602-4069 ; 0000-0003-2173-1470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10477657$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hwang, Chyi</creatorcontrib><creatorcontrib>Cai, Tiao-Yang</creatorcontrib><creatorcontrib>Lu, Li-Shin</creatorcontrib><creatorcontrib>Wang, Tzu-Chi</creatorcontrib><title>On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays</title><title>IEEE access</title><addtitle>Access</addtitle><description>The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the corresponding stability switching curves in the delay parameter plane can be exactly and exhaustively determined using only algebraic computations. In the existing literature, the equation conversion has been achieved by using Rekasius substitution, bilinear substitution, or half-angle tangent substitution, and variable eliminations are carried out by using Sylvester resultant or Dixon resultant. In this paper, we first point out that since the computation of Dixon resultant involves a polynomial division, it could be beneficial in a symbolic programming environment. Then, we provide numerical evidence to compare the computational complexity of using different equation conversion methods and the subsequent resultant elimination to obtain the critical crossing frequencies from which the exact crossing frequency set can be determined. Next, based on the resultant theory, we reveal the roles of the critical crossing frequencies that play in the characterization of the delay map. Finally, we provide an efficient procedure for constructing stability charts in the delay parameter plane for linear time-invariant systems with two delays in states. To demonstrate our contributions, explanatory examples are provided along with a complete illustrative example.</description><subject>Asymptotic stability</subject><subject>bilinear transformation</subject><subject>Characteristic functions</subject><subject>Charts</subject><subject>Computational complexity</subject><subject>CTCR</subject><subject>Delay</subject><subject>Delays</subject><subject>Dixon resultant</subject><subject>Frequency conversion</subject><subject>frequency sweeping</subject><subject>half-angle tangent substitution</subject><subject>Mathematical models</subject><subject>Numerical stability</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Programming environments</subject><subject>Rekasius substitution</subject><subject>Robustness (mathematics)</subject><subject>Stability criteria</subject><subject>stability crossing curves</subject><subject>stability map</subject><subject>Substitutes</subject><subject>Sweeping</subject><subject>Sylvester resultant</subject><subject>Symbolic programming</subject><subject>Time invariant systems</subject><subject>Time-delay systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtq3DAQNaGFhE2-oHkQ5Nnb0c2Xx62btIFAoE7oo5DlUdaLY20lmeC_j1KHkHmYGYZz5nay7BuFLaVQf981zXXbbhkwseW8AlEWJ9kZo0Wdc8mLL5_y0-wihAMkq1JJlmfZfD-RuEfyGJA4S_5gmMeop5j_0AF7cuPx34yTWfL2BfE4TE9kdzx6p80eA4mONG4K0c8mkjbqbhiHuJBmr30MxDpP2iVEfA7k7xD35OHFkZ846iWcZ1-tHgNevMdN9nhz_dD8zu_uf902u7vccFnHnILRQkiEuoMKZYHWaKtpxXuQwvYVdEABaAEaEqi0oua0owjSMqOR1XyT3a59e6cP6uiHZ-0X5fSg_hecf1Jp1cGMqFhPJdOi73lNRWdpJWhVWs40aG765DbZ1dornZ9-EqI6uNlPaX3FgUqQUDGRUHxFGe9C8Gg_plJQb3KpVS71Jpd6lyuxLlfWgIifGKIsC1nyV5odkRk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hwang, Chyi</creator><creator>Cai, Tiao-Yang</creator><creator>Lu, Li-Shin</creator><creator>Wang, Tzu-Chi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-7166-8089</orcidid><orcidid>https://orcid.org/0000-0003-1602-4069</orcidid><orcidid>https://orcid.org/0000-0003-2173-1470</orcidid></search><sort><creationdate>2024</creationdate><title>On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays</title><author>Hwang, Chyi ; Cai, Tiao-Yang ; Lu, Li-Shin ; Wang, Tzu-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic stability</topic><topic>bilinear transformation</topic><topic>Characteristic functions</topic><topic>Charts</topic><topic>Computational complexity</topic><topic>CTCR</topic><topic>Delay</topic><topic>Delays</topic><topic>Dixon resultant</topic><topic>Frequency conversion</topic><topic>frequency sweeping</topic><topic>half-angle tangent substitution</topic><topic>Mathematical models</topic><topic>Numerical stability</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Programming environments</topic><topic>Rekasius substitution</topic><topic>Robustness (mathematics)</topic><topic>Stability criteria</topic><topic>stability crossing curves</topic><topic>stability map</topic><topic>Substitutes</topic><topic>Sweeping</topic><topic>Sylvester resultant</topic><topic>Symbolic programming</topic><topic>Time invariant systems</topic><topic>Time-delay systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Chyi</creatorcontrib><creatorcontrib>Cai, Tiao-Yang</creatorcontrib><creatorcontrib>Lu, Li-Shin</creatorcontrib><creatorcontrib>Wang, Tzu-Chi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Chyi</au><au>Cai, Tiao-Yang</au><au>Lu, Li-Shin</au><au>Wang, Tzu-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>45147</spage><epage>45163</epage><pages>45147-45163</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the corresponding stability switching curves in the delay parameter plane can be exactly and exhaustively determined using only algebraic computations. In the existing literature, the equation conversion has been achieved by using Rekasius substitution, bilinear substitution, or half-angle tangent substitution, and variable eliminations are carried out by using Sylvester resultant or Dixon resultant. In this paper, we first point out that since the computation of Dixon resultant involves a polynomial division, it could be beneficial in a symbolic programming environment. Then, we provide numerical evidence to compare the computational complexity of using different equation conversion methods and the subsequent resultant elimination to obtain the critical crossing frequencies from which the exact crossing frequency set can be determined. Next, based on the resultant theory, we reveal the roles of the critical crossing frequencies that play in the characterization of the delay map. Finally, we provide an efficient procedure for constructing stability charts in the delay parameter plane for linear time-invariant systems with two delays in states. To demonstrate our contributions, explanatory examples are provided along with a complete illustrative example.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3380476</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0001-7166-8089</orcidid><orcidid>https://orcid.org/0000-0003-1602-4069</orcidid><orcidid>https://orcid.org/0000-0003-2173-1470</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.45147-45163 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10477657 |
source | IEEE Xplore Open Access Journals |
subjects | Asymptotic stability bilinear transformation Characteristic functions Charts Computational complexity CTCR Delay Delays Dixon resultant Frequency conversion frequency sweeping half-angle tangent substitution Mathematical models Numerical stability Parameters Polynomials Programming environments Rekasius substitution Robustness (mathematics) Stability criteria stability crossing curves stability map Substitutes Sweeping Sylvester resultant Symbolic programming Time invariant systems Time-delay systems |
title | On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Resultant-Based%20Frequency-Sweeping%20Approaches%20to%20Construct%20Stability%20Charts%20for%20Systems%20With%20Two%20Delays&rft.jtitle=IEEE%20access&rft.au=Hwang,%20Chyi&rft.date=2024&rft.volume=12&rft.spage=45147&rft.epage=45163&rft.pages=45147-45163&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3380476&rft_dat=%3Cproquest_ieee_%3E3015050824%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3015050824&rft_id=info:pmid/&rft_ieee_id=10477657&rfr_iscdi=true |