Loading…

On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays

The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.45147-45163
Main Authors: Hwang, Chyi, Cai, Tiao-Yang, Lu, Li-Shin, Wang, Tzu-Chi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293
container_end_page 45163
container_issue
container_start_page 45147
container_title IEEE access
container_volume 12
creator Hwang, Chyi
Cai, Tiao-Yang
Lu, Li-Shin
Wang, Tzu-Chi
description The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the corresponding stability switching curves in the delay parameter plane can be exactly and exhaustively determined using only algebraic computations. In the existing literature, the equation conversion has been achieved by using Rekasius substitution, bilinear substitution, or half-angle tangent substitution, and variable eliminations are carried out by using Sylvester resultant or Dixon resultant. In this paper, we first point out that since the computation of Dixon resultant involves a polynomial division, it could be beneficial in a symbolic programming environment. Then, we provide numerical evidence to compare the computational complexity of using different equation conversion methods and the subsequent resultant elimination to obtain the critical crossing frequencies from which the exact crossing frequency set can be determined. Next, based on the resultant theory, we reveal the roles of the critical crossing frequencies that play in the characterization of the delay map. Finally, we provide an efficient procedure for constructing stability charts in the delay parameter plane for linear time-invariant systems with two delays in states. To demonstrate our contributions, explanatory examples are provided along with a complete illustrative example.
doi_str_mv 10.1109/ACCESS.2024.3380476
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10477657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10477657</ieee_id><doaj_id>oai_doaj_org_article_2d152a4dd3914bf184187f32a0a3cd0a</doaj_id><sourcerecordid>3015050824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293</originalsourceid><addsrcrecordid>eNpNUdtq3DAQNaGFhE2-oHkQ5Nnb0c2Xx62btIFAoE7oo5DlUdaLY20lmeC_j1KHkHmYGYZz5nay7BuFLaVQf981zXXbbhkwseW8AlEWJ9kZo0Wdc8mLL5_y0-wihAMkq1JJlmfZfD-RuEfyGJA4S_5gmMeop5j_0AF7cuPx34yTWfL2BfE4TE9kdzx6p80eA4mONG4K0c8mkjbqbhiHuJBmr30MxDpP2iVEfA7k7xD35OHFkZ846iWcZ1-tHgNevMdN9nhz_dD8zu_uf902u7vccFnHnILRQkiEuoMKZYHWaKtpxXuQwvYVdEABaAEaEqi0oua0owjSMqOR1XyT3a59e6cP6uiHZ-0X5fSg_hecf1Jp1cGMqFhPJdOi73lNRWdpJWhVWs40aG765DbZ1dornZ9-EqI6uNlPaX3FgUqQUDGRUHxFGe9C8Gg_plJQb3KpVS71Jpd6lyuxLlfWgIifGKIsC1nyV5odkRk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015050824</pqid></control><display><type>article</type><title>On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays</title><source>IEEE Xplore Open Access Journals</source><creator>Hwang, Chyi ; Cai, Tiao-Yang ; Lu, Li-Shin ; Wang, Tzu-Chi</creator><creatorcontrib>Hwang, Chyi ; Cai, Tiao-Yang ; Lu, Li-Shin ; Wang, Tzu-Chi</creatorcontrib><description>The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the corresponding stability switching curves in the delay parameter plane can be exactly and exhaustively determined using only algebraic computations. In the existing literature, the equation conversion has been achieved by using Rekasius substitution, bilinear substitution, or half-angle tangent substitution, and variable eliminations are carried out by using Sylvester resultant or Dixon resultant. In this paper, we first point out that since the computation of Dixon resultant involves a polynomial division, it could be beneficial in a symbolic programming environment. Then, we provide numerical evidence to compare the computational complexity of using different equation conversion methods and the subsequent resultant elimination to obtain the critical crossing frequencies from which the exact crossing frequency set can be determined. Next, based on the resultant theory, we reveal the roles of the critical crossing frequencies that play in the characterization of the delay map. Finally, we provide an efficient procedure for constructing stability charts in the delay parameter plane for linear time-invariant systems with two delays in states. To demonstrate our contributions, explanatory examples are provided along with a complete illustrative example.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3380476</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Asymptotic stability ; bilinear transformation ; Characteristic functions ; Charts ; Computational complexity ; CTCR ; Delay ; Delays ; Dixon resultant ; Frequency conversion ; frequency sweeping ; half-angle tangent substitution ; Mathematical models ; Numerical stability ; Parameters ; Polynomials ; Programming environments ; Rekasius substitution ; Robustness (mathematics) ; Stability criteria ; stability crossing curves ; stability map ; Substitutes ; Sweeping ; Sylvester resultant ; Symbolic programming ; Time invariant systems ; Time-delay systems</subject><ispartof>IEEE access, 2024, Vol.12, p.45147-45163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293</cites><orcidid>0009-0001-7166-8089 ; 0000-0003-1602-4069 ; 0000-0003-2173-1470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10477657$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hwang, Chyi</creatorcontrib><creatorcontrib>Cai, Tiao-Yang</creatorcontrib><creatorcontrib>Lu, Li-Shin</creatorcontrib><creatorcontrib>Wang, Tzu-Chi</creatorcontrib><title>On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays</title><title>IEEE access</title><addtitle>Access</addtitle><description>The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the corresponding stability switching curves in the delay parameter plane can be exactly and exhaustively determined using only algebraic computations. In the existing literature, the equation conversion has been achieved by using Rekasius substitution, bilinear substitution, or half-angle tangent substitution, and variable eliminations are carried out by using Sylvester resultant or Dixon resultant. In this paper, we first point out that since the computation of Dixon resultant involves a polynomial division, it could be beneficial in a symbolic programming environment. Then, we provide numerical evidence to compare the computational complexity of using different equation conversion methods and the subsequent resultant elimination to obtain the critical crossing frequencies from which the exact crossing frequency set can be determined. Next, based on the resultant theory, we reveal the roles of the critical crossing frequencies that play in the characterization of the delay map. Finally, we provide an efficient procedure for constructing stability charts in the delay parameter plane for linear time-invariant systems with two delays in states. To demonstrate our contributions, explanatory examples are provided along with a complete illustrative example.</description><subject>Asymptotic stability</subject><subject>bilinear transformation</subject><subject>Characteristic functions</subject><subject>Charts</subject><subject>Computational complexity</subject><subject>CTCR</subject><subject>Delay</subject><subject>Delays</subject><subject>Dixon resultant</subject><subject>Frequency conversion</subject><subject>frequency sweeping</subject><subject>half-angle tangent substitution</subject><subject>Mathematical models</subject><subject>Numerical stability</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Programming environments</subject><subject>Rekasius substitution</subject><subject>Robustness (mathematics)</subject><subject>Stability criteria</subject><subject>stability crossing curves</subject><subject>stability map</subject><subject>Substitutes</subject><subject>Sweeping</subject><subject>Sylvester resultant</subject><subject>Symbolic programming</subject><subject>Time invariant systems</subject><subject>Time-delay systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtq3DAQNaGFhE2-oHkQ5Nnb0c2Xx62btIFAoE7oo5DlUdaLY20lmeC_j1KHkHmYGYZz5nay7BuFLaVQf981zXXbbhkwseW8AlEWJ9kZo0Wdc8mLL5_y0-wihAMkq1JJlmfZfD-RuEfyGJA4S_5gmMeop5j_0AF7cuPx34yTWfL2BfE4TE9kdzx6p80eA4mONG4K0c8mkjbqbhiHuJBmr30MxDpP2iVEfA7k7xD35OHFkZ846iWcZ1-tHgNevMdN9nhz_dD8zu_uf902u7vccFnHnILRQkiEuoMKZYHWaKtpxXuQwvYVdEABaAEaEqi0oua0owjSMqOR1XyT3a59e6cP6uiHZ-0X5fSg_hecf1Jp1cGMqFhPJdOi73lNRWdpJWhVWs40aG765DbZ1dornZ9-EqI6uNlPaX3FgUqQUDGRUHxFGe9C8Gg_plJQb3KpVS71Jpd6lyuxLlfWgIifGKIsC1nyV5odkRk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hwang, Chyi</creator><creator>Cai, Tiao-Yang</creator><creator>Lu, Li-Shin</creator><creator>Wang, Tzu-Chi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-7166-8089</orcidid><orcidid>https://orcid.org/0000-0003-1602-4069</orcidid><orcidid>https://orcid.org/0000-0003-2173-1470</orcidid></search><sort><creationdate>2024</creationdate><title>On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays</title><author>Hwang, Chyi ; Cai, Tiao-Yang ; Lu, Li-Shin ; Wang, Tzu-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic stability</topic><topic>bilinear transformation</topic><topic>Characteristic functions</topic><topic>Charts</topic><topic>Computational complexity</topic><topic>CTCR</topic><topic>Delay</topic><topic>Delays</topic><topic>Dixon resultant</topic><topic>Frequency conversion</topic><topic>frequency sweeping</topic><topic>half-angle tangent substitution</topic><topic>Mathematical models</topic><topic>Numerical stability</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Programming environments</topic><topic>Rekasius substitution</topic><topic>Robustness (mathematics)</topic><topic>Stability criteria</topic><topic>stability crossing curves</topic><topic>stability map</topic><topic>Substitutes</topic><topic>Sweeping</topic><topic>Sylvester resultant</topic><topic>Symbolic programming</topic><topic>Time invariant systems</topic><topic>Time-delay systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Chyi</creatorcontrib><creatorcontrib>Cai, Tiao-Yang</creatorcontrib><creatorcontrib>Lu, Li-Shin</creatorcontrib><creatorcontrib>Wang, Tzu-Chi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Chyi</au><au>Cai, Tiao-Yang</au><au>Lu, Li-Shin</au><au>Wang, Tzu-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>45147</spage><epage>45163</epage><pages>45147-45163</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The resultant-based frequency-sweeping approach is appealing for creating a stability map to study stability robustness against delay uncertainties. It relies on converting the system's transcendental characteristic function into a polynomial form such that the crossing frequency set and the corresponding stability switching curves in the delay parameter plane can be exactly and exhaustively determined using only algebraic computations. In the existing literature, the equation conversion has been achieved by using Rekasius substitution, bilinear substitution, or half-angle tangent substitution, and variable eliminations are carried out by using Sylvester resultant or Dixon resultant. In this paper, we first point out that since the computation of Dixon resultant involves a polynomial division, it could be beneficial in a symbolic programming environment. Then, we provide numerical evidence to compare the computational complexity of using different equation conversion methods and the subsequent resultant elimination to obtain the critical crossing frequencies from which the exact crossing frequency set can be determined. Next, based on the resultant theory, we reveal the roles of the critical crossing frequencies that play in the characterization of the delay map. Finally, we provide an efficient procedure for constructing stability charts in the delay parameter plane for linear time-invariant systems with two delays in states. To demonstrate our contributions, explanatory examples are provided along with a complete illustrative example.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3380476</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0001-7166-8089</orcidid><orcidid>https://orcid.org/0000-0003-1602-4069</orcidid><orcidid>https://orcid.org/0000-0003-2173-1470</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.45147-45163
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10477657
source IEEE Xplore Open Access Journals
subjects Asymptotic stability
bilinear transformation
Characteristic functions
Charts
Computational complexity
CTCR
Delay
Delays
Dixon resultant
Frequency conversion
frequency sweeping
half-angle tangent substitution
Mathematical models
Numerical stability
Parameters
Polynomials
Programming environments
Rekasius substitution
Robustness (mathematics)
Stability criteria
stability crossing curves
stability map
Substitutes
Sweeping
Sylvester resultant
Symbolic programming
Time invariant systems
Time-delay systems
title On the Use of Resultant-Based Frequency-Sweeping Approaches to Construct Stability Charts for Systems With Two Delays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Resultant-Based%20Frequency-Sweeping%20Approaches%20to%20Construct%20Stability%20Charts%20for%20Systems%20With%20Two%20Delays&rft.jtitle=IEEE%20access&rft.au=Hwang,%20Chyi&rft.date=2024&rft.volume=12&rft.spage=45147&rft.epage=45163&rft.pages=45147-45163&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3380476&rft_dat=%3Cproquest_ieee_%3E3015050824%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-10ca445e09b08e56efcafa183d054fd80b0100160a05e07f4931b1e05f2cae293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3015050824&rft_id=info:pmid/&rft_ieee_id=10477657&rfr_iscdi=true