Loading…

Enhancing Anomaly Detection in Videos using a Combined YOLO and a VGG GRU Approach

In this paper, we propose an innovative architecture for anomaly detection in videos, motivated by the need to answer quickly to danger in monitoring streams, without requiring expensive computational power. Drawing inspiration from human behavior our approach integrates spatial and temporal analyse...

Full description

Saved in:
Bibliographic Details
Main Authors: Poirier, Fabien, Jaziri, Rakia, Srour, Camille, Bernard, Gilles
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Poirier, Fabien
Jaziri, Rakia
Srour, Camille
Bernard, Gilles
description In this paper, we propose an innovative architecture for anomaly detection in videos, motivated by the need to answer quickly to danger in monitoring streams, without requiring expensive computational power. Drawing inspiration from human behavior our approach integrates spatial and temporal analyses. For the temporal analysis, which classifies video sequences, we associate a recurrent convolutional network combining Visual Geometry Group Net 19 (VGG19) and Gated Reccurrent Units (GRU), with a Multilayer Perceptron (MLP). Simultaneously, the spatial analysis of individual images is conducted through You Only Look Once version 7 (YOLOv7). Then, both predictions are combined to perform the final prediction, where an anomaly is signaled if a perceived suspicious object or unexpected action occurs on the screen. Our experimental results shows the integration of both approaches reduces the rate of false negatives, leading to improved identification of anomalous events within video streams for both binary and multi-class models. We also show that multi-class models are less suited for this task than binary models.
doi_str_mv 10.1109/AICCSA59173.2023.10479307
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10479307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10479307</ieee_id><sourcerecordid>10479307</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-79ad75c24edb73938acf77478eb0b0e296264605b9ddcaf8cd9964b7f557f1c63</originalsourceid><addsrcrecordid>eNo1kMFKAzEURaMgWGv_wEX8gKkveclk3nIY61gYKFRbcFUyScZG2kzp1EX_XkVdXTgczuIydi9gKgTQQzmvqpdSkzA4lSBxKkAZQjAXbEKGCtSAghTSJRtJkYtMI8I1uxmGDwAkWegRW87S1iYX0zsvU7-3uzN_DKfgTrFPPCa-jj70A_8cfgzLq37fxhQ8f1s0C26T_2bruub1csXLw-HYW7e9ZVed3Q1h8rdjtnqavVbPWbOo51XZZFGCOmWGrDfaSRV8a5CwsK4zRpkitNBCkJTLXOWgW_Le2a5wnihXrem0Np1wOY7Z3W83hhA2h2Pc2-N58_8BfgErklAf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhancing Anomaly Detection in Videos using a Combined YOLO and a VGG GRU Approach</title><source>IEEE Xplore All Conference Series</source><creator>Poirier, Fabien ; Jaziri, Rakia ; Srour, Camille ; Bernard, Gilles</creator><creatorcontrib>Poirier, Fabien ; Jaziri, Rakia ; Srour, Camille ; Bernard, Gilles</creatorcontrib><description>In this paper, we propose an innovative architecture for anomaly detection in videos, motivated by the need to answer quickly to danger in monitoring streams, without requiring expensive computational power. Drawing inspiration from human behavior our approach integrates spatial and temporal analyses. For the temporal analysis, which classifies video sequences, we associate a recurrent convolutional network combining Visual Geometry Group Net 19 (VGG19) and Gated Reccurrent Units (GRU), with a Multilayer Perceptron (MLP). Simultaneously, the spatial analysis of individual images is conducted through You Only Look Once version 7 (YOLOv7). Then, both predictions are combined to perform the final prediction, where an anomaly is signaled if a perceived suspicious object or unexpected action occurs on the screen. Our experimental results shows the integration of both approaches reduces the rate of false negatives, leading to improved identification of anomalous events within video streams for both binary and multi-class models. We also show that multi-class models are less suited for this task than binary models.</description><identifier>EISSN: 2161-5330</identifier><identifier>EISBN: 9798350319439</identifier><identifier>DOI: 10.1109/AICCSA59173.2023.10479307</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Anomaly detection ; Computer architecture ; Data models ; GRU ; Task analysis ; Temporal Analysis ; VGG19 ; Video sequences ; Videos ; Visualization ; YOLO ; YOLOv7</subject><ispartof>2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10479307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10479307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Poirier, Fabien</creatorcontrib><creatorcontrib>Jaziri, Rakia</creatorcontrib><creatorcontrib>Srour, Camille</creatorcontrib><creatorcontrib>Bernard, Gilles</creatorcontrib><title>Enhancing Anomaly Detection in Videos using a Combined YOLO and a VGG GRU Approach</title><title>2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA)</title><addtitle>AICCSA</addtitle><description>In this paper, we propose an innovative architecture for anomaly detection in videos, motivated by the need to answer quickly to danger in monitoring streams, without requiring expensive computational power. Drawing inspiration from human behavior our approach integrates spatial and temporal analyses. For the temporal analysis, which classifies video sequences, we associate a recurrent convolutional network combining Visual Geometry Group Net 19 (VGG19) and Gated Reccurrent Units (GRU), with a Multilayer Perceptron (MLP). Simultaneously, the spatial analysis of individual images is conducted through You Only Look Once version 7 (YOLOv7). Then, both predictions are combined to perform the final prediction, where an anomaly is signaled if a perceived suspicious object or unexpected action occurs on the screen. Our experimental results shows the integration of both approaches reduces the rate of false negatives, leading to improved identification of anomalous events within video streams for both binary and multi-class models. We also show that multi-class models are less suited for this task than binary models.</description><subject>Analytical models</subject><subject>Anomaly detection</subject><subject>Computer architecture</subject><subject>Data models</subject><subject>GRU</subject><subject>Task analysis</subject><subject>Temporal Analysis</subject><subject>VGG19</subject><subject>Video sequences</subject><subject>Videos</subject><subject>Visualization</subject><subject>YOLO</subject><subject>YOLOv7</subject><issn>2161-5330</issn><isbn>9798350319439</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMFKAzEURaMgWGv_wEX8gKkveclk3nIY61gYKFRbcFUyScZG2kzp1EX_XkVdXTgczuIydi9gKgTQQzmvqpdSkzA4lSBxKkAZQjAXbEKGCtSAghTSJRtJkYtMI8I1uxmGDwAkWegRW87S1iYX0zsvU7-3uzN_DKfgTrFPPCa-jj70A_8cfgzLq37fxhQ8f1s0C26T_2bruub1csXLw-HYW7e9ZVed3Q1h8rdjtnqavVbPWbOo51XZZFGCOmWGrDfaSRV8a5CwsK4zRpkitNBCkJTLXOWgW_Le2a5wnihXrem0Np1wOY7Z3W83hhA2h2Pc2-N58_8BfgErklAf</recordid><startdate>20231204</startdate><enddate>20231204</enddate><creator>Poirier, Fabien</creator><creator>Jaziri, Rakia</creator><creator>Srour, Camille</creator><creator>Bernard, Gilles</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20231204</creationdate><title>Enhancing Anomaly Detection in Videos using a Combined YOLO and a VGG GRU Approach</title><author>Poirier, Fabien ; Jaziri, Rakia ; Srour, Camille ; Bernard, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-79ad75c24edb73938acf77478eb0b0e296264605b9ddcaf8cd9964b7f557f1c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Anomaly detection</topic><topic>Computer architecture</topic><topic>Data models</topic><topic>GRU</topic><topic>Task analysis</topic><topic>Temporal Analysis</topic><topic>VGG19</topic><topic>Video sequences</topic><topic>Videos</topic><topic>Visualization</topic><topic>YOLO</topic><topic>YOLOv7</topic><toplevel>online_resources</toplevel><creatorcontrib>Poirier, Fabien</creatorcontrib><creatorcontrib>Jaziri, Rakia</creatorcontrib><creatorcontrib>Srour, Camille</creatorcontrib><creatorcontrib>Bernard, Gilles</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Poirier, Fabien</au><au>Jaziri, Rakia</au><au>Srour, Camille</au><au>Bernard, Gilles</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhancing Anomaly Detection in Videos using a Combined YOLO and a VGG GRU Approach</atitle><btitle>2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA)</btitle><stitle>AICCSA</stitle><date>2023-12-04</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2161-5330</eissn><eisbn>9798350319439</eisbn><abstract>In this paper, we propose an innovative architecture for anomaly detection in videos, motivated by the need to answer quickly to danger in monitoring streams, without requiring expensive computational power. Drawing inspiration from human behavior our approach integrates spatial and temporal analyses. For the temporal analysis, which classifies video sequences, we associate a recurrent convolutional network combining Visual Geometry Group Net 19 (VGG19) and Gated Reccurrent Units (GRU), with a Multilayer Perceptron (MLP). Simultaneously, the spatial analysis of individual images is conducted through You Only Look Once version 7 (YOLOv7). Then, both predictions are combined to perform the final prediction, where an anomaly is signaled if a perceived suspicious object or unexpected action occurs on the screen. Our experimental results shows the integration of both approaches reduces the rate of false negatives, leading to improved identification of anomalous events within video streams for both binary and multi-class models. We also show that multi-class models are less suited for this task than binary models.</abstract><pub>IEEE</pub><doi>10.1109/AICCSA59173.2023.10479307</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-5330
ispartof 2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), 2023, p.1-6
issn 2161-5330
language eng
recordid cdi_ieee_primary_10479307
source IEEE Xplore All Conference Series
subjects Analytical models
Anomaly detection
Computer architecture
Data models
GRU
Task analysis
Temporal Analysis
VGG19
Video sequences
Videos
Visualization
YOLO
YOLOv7
title Enhancing Anomaly Detection in Videos using a Combined YOLO and a VGG GRU Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhancing%20Anomaly%20Detection%20in%20Videos%20using%20a%20Combined%20YOLO%20and%20a%20VGG%20GRU%20Approach&rft.btitle=2023%2020th%20ACS/IEEE%20International%20Conference%20on%20Computer%20Systems%20and%20Applications%20(AICCSA)&rft.au=Poirier,%20Fabien&rft.date=2023-12-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2161-5330&rft_id=info:doi/10.1109/AICCSA59173.2023.10479307&rft.eisbn=9798350319439&rft_dat=%3Cieee_CHZPO%3E10479307%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-79ad75c24edb73938acf77478eb0b0e296264605b9ddcaf8cd9964b7f557f1c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10479307&rfr_iscdi=true