Loading…
Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging
Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the hig...
Saved in:
Published in: | IEEE transactions on power electronics 2024-07, Vol.39 (7), p.7808-7814 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3 |
container_end_page | 7814 |
container_issue | 7 |
container_start_page | 7808 |
container_title | IEEE transactions on power electronics |
container_volume | 39 |
creator | Mu, Wei Janabi, Ameer Hu, Borong Shillaber, Luke Long, Teng |
description | Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the high Young's modulus of SiC crystals. This letter takes a flexible printed circuit board (FPCB)/die/active metal brazed (AMB) packaging stack as an example to prove the feasibility of floating die structure enabled by liquid metal (LM) fluidic connection. The CTE mismatch among the die, printed circuit board, and AMB substrate is decoupled by the LM layer without compromise of thermal and electrical conduction. The finite-element analysis demonstrates a 56% reduction in von Mises stress of the device and more than 99% shear stress reduction at the FPCB-AMB interface, compared with a conventional rigid solder connection. Testing results show that LM-based packaging has a similar thermal and electrical conduction and higher breakdown voltage when compared with the soldered counterpart. Accelerated thermal cycling aging tests validate the stability of the insulation ring for LM-based packaging, especially under high-temperature conditions. The feasibility of using LM fluidic interconnections for a floating die structure of SiC packaging is validated. |
doi_str_mv | 10.1109/TPEL.2024.3379121 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10480590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10480590</ieee_id><sourcerecordid>3056006197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPTTwvdvaDbY8GQU0wkoDnzdCdheKyhXY3xKu_3BI4eJrJ5HnfSR7G7kEMAIR6WszG00Es4nSQJLmCGC5YD1QKkQCRX7KekDKLpFLJNbvxfiMEpJmAHvudmn1nSv5BLdZ8UofdaD6yTUO6Nbbh2JThbLE1zYq_GOLz1nW67Rzxyjr-VbcOa3vgizW5rd2SXmNjdOgKHHnPbcXnZsRn9kCOj-vQ6mwAPJ-h_sZVaL1lVxXWnu7Os88Wk_Fi9BZNP1_fR8_TSMdStRGVGYCmPFEKlkut01TSUMqq1KRKLJGwwjjOYy3LlCDLMc5RJYD5EkmrZdJnj6fanbP7jnxbbGznmvCxSEQ2FGIIKg8UnCjtrPeOqmLnzBbdTwGiOJoujqaLo-nibDpkHk4ZQ0T_-FSKTInkDxEtfS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056006197</pqid></control><display><type>article</type><title>Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mu, Wei ; Janabi, Ameer ; Hu, Borong ; Shillaber, Luke ; Long, Teng</creator><creatorcontrib>Mu, Wei ; Janabi, Ameer ; Hu, Borong ; Shillaber, Luke ; Long, Teng</creatorcontrib><description>Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the high Young's modulus of SiC crystals. This letter takes a flexible printed circuit board (FPCB)/die/active metal brazed (AMB) packaging stack as an example to prove the feasibility of floating die structure enabled by liquid metal (LM) fluidic connection. The CTE mismatch among the die, printed circuit board, and AMB substrate is decoupled by the LM layer without compromise of thermal and electrical conduction. The finite-element analysis demonstrates a 56% reduction in von Mises stress of the device and more than 99% shear stress reduction at the FPCB-AMB interface, compared with a conventional rigid solder connection. Testing results show that LM-based packaging has a similar thermal and electrical conduction and higher breakdown voltage when compared with the soldered counterpart. Accelerated thermal cycling aging tests validate the stability of the insulation ring for LM-based packaging, especially under high-temperature conditions. The feasibility of using LM fluidic interconnections for a floating die structure of SiC packaging is validated.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3379121</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Casting ; Circuit boards ; Electrical conduction ; Electronic packaging ; Electronic packaging thermal management ; Feasibility ; Finite element method ; High temperature ; Insulation ; Liquid metal (LM) ; Liquid metals ; Liquids ; Metals ; Modulus of elasticity ; Packaging ; printed circuit board (PCB)/direct bond copper (DBC) hybrid packaging ; Printed circuit boards ; Printed circuits ; reliability ; Shear stress ; SiC packaging ; Silicon carbide ; Stress ; Substrates ; Thermal cycling ; Thermal expansion ; Thermal stresses ; thermomechanical stress</subject><ispartof>IEEE transactions on power electronics, 2024-07, Vol.39 (7), p.7808-7814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3</cites><orcidid>0000-0002-4088-5013 ; 0000-0001-7730-1600 ; 0000-0003-4401-102X ; 0000-0002-5030-9554 ; 0000-0002-6582-5551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10480590$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Janabi, Ameer</creatorcontrib><creatorcontrib>Hu, Borong</creatorcontrib><creatorcontrib>Shillaber, Luke</creatorcontrib><creatorcontrib>Long, Teng</creatorcontrib><title>Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the high Young's modulus of SiC crystals. This letter takes a flexible printed circuit board (FPCB)/die/active metal brazed (AMB) packaging stack as an example to prove the feasibility of floating die structure enabled by liquid metal (LM) fluidic connection. The CTE mismatch among the die, printed circuit board, and AMB substrate is decoupled by the LM layer without compromise of thermal and electrical conduction. The finite-element analysis demonstrates a 56% reduction in von Mises stress of the device and more than 99% shear stress reduction at the FPCB-AMB interface, compared with a conventional rigid solder connection. Testing results show that LM-based packaging has a similar thermal and electrical conduction and higher breakdown voltage when compared with the soldered counterpart. Accelerated thermal cycling aging tests validate the stability of the insulation ring for LM-based packaging, especially under high-temperature conditions. The feasibility of using LM fluidic interconnections for a floating die structure of SiC packaging is validated.</description><subject>Casting</subject><subject>Circuit boards</subject><subject>Electrical conduction</subject><subject>Electronic packaging</subject><subject>Electronic packaging thermal management</subject><subject>Feasibility</subject><subject>Finite element method</subject><subject>High temperature</subject><subject>Insulation</subject><subject>Liquid metal (LM)</subject><subject>Liquid metals</subject><subject>Liquids</subject><subject>Metals</subject><subject>Modulus of elasticity</subject><subject>Packaging</subject><subject>printed circuit board (PCB)/direct bond copper (DBC) hybrid packaging</subject><subject>Printed circuit boards</subject><subject>Printed circuits</subject><subject>reliability</subject><subject>Shear stress</subject><subject>SiC packaging</subject><subject>Silicon carbide</subject><subject>Stress</subject><subject>Substrates</subject><subject>Thermal cycling</subject><subject>Thermal expansion</subject><subject>Thermal stresses</subject><subject>thermomechanical stress</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1PAjEQhhujiYj-ABMPTTwvdvaDbY8GQU0wkoDnzdCdheKyhXY3xKu_3BI4eJrJ5HnfSR7G7kEMAIR6WszG00Es4nSQJLmCGC5YD1QKkQCRX7KekDKLpFLJNbvxfiMEpJmAHvudmn1nSv5BLdZ8UofdaD6yTUO6Nbbh2JThbLE1zYq_GOLz1nW67Rzxyjr-VbcOa3vgizW5rd2SXmNjdOgKHHnPbcXnZsRn9kCOj-vQ6mwAPJ-h_sZVaL1lVxXWnu7Os88Wk_Fi9BZNP1_fR8_TSMdStRGVGYCmPFEKlkut01TSUMqq1KRKLJGwwjjOYy3LlCDLMc5RJYD5EkmrZdJnj6fanbP7jnxbbGznmvCxSEQ2FGIIKg8UnCjtrPeOqmLnzBbdTwGiOJoujqaLo-nibDpkHk4ZQ0T_-FSKTInkDxEtfS0</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Mu, Wei</creator><creator>Janabi, Ameer</creator><creator>Hu, Borong</creator><creator>Shillaber, Luke</creator><creator>Long, Teng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4088-5013</orcidid><orcidid>https://orcid.org/0000-0001-7730-1600</orcidid><orcidid>https://orcid.org/0000-0003-4401-102X</orcidid><orcidid>https://orcid.org/0000-0002-5030-9554</orcidid><orcidid>https://orcid.org/0000-0002-6582-5551</orcidid></search><sort><creationdate>20240701</creationdate><title>Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging</title><author>Mu, Wei ; Janabi, Ameer ; Hu, Borong ; Shillaber, Luke ; Long, Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Casting</topic><topic>Circuit boards</topic><topic>Electrical conduction</topic><topic>Electronic packaging</topic><topic>Electronic packaging thermal management</topic><topic>Feasibility</topic><topic>Finite element method</topic><topic>High temperature</topic><topic>Insulation</topic><topic>Liquid metal (LM)</topic><topic>Liquid metals</topic><topic>Liquids</topic><topic>Metals</topic><topic>Modulus of elasticity</topic><topic>Packaging</topic><topic>printed circuit board (PCB)/direct bond copper (DBC) hybrid packaging</topic><topic>Printed circuit boards</topic><topic>Printed circuits</topic><topic>reliability</topic><topic>Shear stress</topic><topic>SiC packaging</topic><topic>Silicon carbide</topic><topic>Stress</topic><topic>Substrates</topic><topic>Thermal cycling</topic><topic>Thermal expansion</topic><topic>Thermal stresses</topic><topic>thermomechanical stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Janabi, Ameer</creatorcontrib><creatorcontrib>Hu, Borong</creatorcontrib><creatorcontrib>Shillaber, Luke</creatorcontrib><creatorcontrib>Long, Teng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Wei</au><au>Janabi, Ameer</au><au>Hu, Borong</au><au>Shillaber, Luke</au><au>Long, Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>39</volume><issue>7</issue><spage>7808</spage><epage>7814</epage><pages>7808-7814</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the high Young's modulus of SiC crystals. This letter takes a flexible printed circuit board (FPCB)/die/active metal brazed (AMB) packaging stack as an example to prove the feasibility of floating die structure enabled by liquid metal (LM) fluidic connection. The CTE mismatch among the die, printed circuit board, and AMB substrate is decoupled by the LM layer without compromise of thermal and electrical conduction. The finite-element analysis demonstrates a 56% reduction in von Mises stress of the device and more than 99% shear stress reduction at the FPCB-AMB interface, compared with a conventional rigid solder connection. Testing results show that LM-based packaging has a similar thermal and electrical conduction and higher breakdown voltage when compared with the soldered counterpart. Accelerated thermal cycling aging tests validate the stability of the insulation ring for LM-based packaging, especially under high-temperature conditions. The feasibility of using LM fluidic interconnections for a floating die structure of SiC packaging is validated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2024.3379121</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4088-5013</orcidid><orcidid>https://orcid.org/0000-0001-7730-1600</orcidid><orcidid>https://orcid.org/0000-0003-4401-102X</orcidid><orcidid>https://orcid.org/0000-0002-5030-9554</orcidid><orcidid>https://orcid.org/0000-0002-6582-5551</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2024-07, Vol.39 (7), p.7808-7814 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_10480590 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Casting Circuit boards Electrical conduction Electronic packaging Electronic packaging thermal management Feasibility Finite element method High temperature Insulation Liquid metal (LM) Liquid metals Liquids Metals Modulus of elasticity Packaging printed circuit board (PCB)/direct bond copper (DBC) hybrid packaging Printed circuit boards Printed circuits reliability Shear stress SiC packaging Silicon carbide Stress Substrates Thermal cycling Thermal expansion Thermal stresses thermomechanical stress |
title | Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20Metal%20Fluidic%20Connection%20and%20Floating%20Die%20Structure%20for%20Ultralow%20Thermomechanical%20Stress%20of%20SiC%20Power%20Electronics%20Packaging&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Mu,%20Wei&rft.date=2024-07-01&rft.volume=39&rft.issue=7&rft.spage=7808&rft.epage=7814&rft.pages=7808-7814&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3379121&rft_dat=%3Cproquest_ieee_%3E3056006197%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3056006197&rft_id=info:pmid/&rft_ieee_id=10480590&rfr_iscdi=true |