Loading…

Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging

Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the hig...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2024-07, Vol.39 (7), p.7808-7814
Main Authors: Mu, Wei, Janabi, Ameer, Hu, Borong, Shillaber, Luke, Long, Teng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3
container_end_page 7814
container_issue 7
container_start_page 7808
container_title IEEE transactions on power electronics
container_volume 39
creator Mu, Wei
Janabi, Ameer
Hu, Borong
Shillaber, Luke
Long, Teng
description Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the high Young's modulus of SiC crystals. This letter takes a flexible printed circuit board (FPCB)/die/active metal brazed (AMB) packaging stack as an example to prove the feasibility of floating die structure enabled by liquid metal (LM) fluidic connection. The CTE mismatch among the die, printed circuit board, and AMB substrate is decoupled by the LM layer without compromise of thermal and electrical conduction. The finite-element analysis demonstrates a 56% reduction in von Mises stress of the device and more than 99% shear stress reduction at the FPCB-AMB interface, compared with a conventional rigid solder connection. Testing results show that LM-based packaging has a similar thermal and electrical conduction and higher breakdown voltage when compared with the soldered counterpart. Accelerated thermal cycling aging tests validate the stability of the insulation ring for LM-based packaging, especially under high-temperature conditions. The feasibility of using LM fluidic interconnections for a floating die structure of SiC packaging is validated.
doi_str_mv 10.1109/TPEL.2024.3379121
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10480590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10480590</ieee_id><sourcerecordid>3056006197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPTTwvdvaDbY8GQU0wkoDnzdCdheKyhXY3xKu_3BI4eJrJ5HnfSR7G7kEMAIR6WszG00Es4nSQJLmCGC5YD1QKkQCRX7KekDKLpFLJNbvxfiMEpJmAHvudmn1nSv5BLdZ8UofdaD6yTUO6Nbbh2JThbLE1zYq_GOLz1nW67Rzxyjr-VbcOa3vgizW5rd2SXmNjdOgKHHnPbcXnZsRn9kCOj-vQ6mwAPJ-h_sZVaL1lVxXWnu7Os88Wk_Fi9BZNP1_fR8_TSMdStRGVGYCmPFEKlkut01TSUMqq1KRKLJGwwjjOYy3LlCDLMc5RJYD5EkmrZdJnj6fanbP7jnxbbGznmvCxSEQ2FGIIKg8UnCjtrPeOqmLnzBbdTwGiOJoujqaLo-nibDpkHk4ZQ0T_-FSKTInkDxEtfS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056006197</pqid></control><display><type>article</type><title>Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mu, Wei ; Janabi, Ameer ; Hu, Borong ; Shillaber, Luke ; Long, Teng</creator><creatorcontrib>Mu, Wei ; Janabi, Ameer ; Hu, Borong ; Shillaber, Luke ; Long, Teng</creatorcontrib><description>Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the high Young's modulus of SiC crystals. This letter takes a flexible printed circuit board (FPCB)/die/active metal brazed (AMB) packaging stack as an example to prove the feasibility of floating die structure enabled by liquid metal (LM) fluidic connection. The CTE mismatch among the die, printed circuit board, and AMB substrate is decoupled by the LM layer without compromise of thermal and electrical conduction. The finite-element analysis demonstrates a 56% reduction in von Mises stress of the device and more than 99% shear stress reduction at the FPCB-AMB interface, compared with a conventional rigid solder connection. Testing results show that LM-based packaging has a similar thermal and electrical conduction and higher breakdown voltage when compared with the soldered counterpart. Accelerated thermal cycling aging tests validate the stability of the insulation ring for LM-based packaging, especially under high-temperature conditions. The feasibility of using LM fluidic interconnections for a floating die structure of SiC packaging is validated.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3379121</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Casting ; Circuit boards ; Electrical conduction ; Electronic packaging ; Electronic packaging thermal management ; Feasibility ; Finite element method ; High temperature ; Insulation ; Liquid metal (LM) ; Liquid metals ; Liquids ; Metals ; Modulus of elasticity ; Packaging ; printed circuit board (PCB)/direct bond copper (DBC) hybrid packaging ; Printed circuit boards ; Printed circuits ; reliability ; Shear stress ; SiC packaging ; Silicon carbide ; Stress ; Substrates ; Thermal cycling ; Thermal expansion ; Thermal stresses ; thermomechanical stress</subject><ispartof>IEEE transactions on power electronics, 2024-07, Vol.39 (7), p.7808-7814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3</cites><orcidid>0000-0002-4088-5013 ; 0000-0001-7730-1600 ; 0000-0003-4401-102X ; 0000-0002-5030-9554 ; 0000-0002-6582-5551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10480590$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Janabi, Ameer</creatorcontrib><creatorcontrib>Hu, Borong</creatorcontrib><creatorcontrib>Shillaber, Luke</creatorcontrib><creatorcontrib>Long, Teng</creatorcontrib><title>Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the high Young's modulus of SiC crystals. This letter takes a flexible printed circuit board (FPCB)/die/active metal brazed (AMB) packaging stack as an example to prove the feasibility of floating die structure enabled by liquid metal (LM) fluidic connection. The CTE mismatch among the die, printed circuit board, and AMB substrate is decoupled by the LM layer without compromise of thermal and electrical conduction. The finite-element analysis demonstrates a 56% reduction in von Mises stress of the device and more than 99% shear stress reduction at the FPCB-AMB interface, compared with a conventional rigid solder connection. Testing results show that LM-based packaging has a similar thermal and electrical conduction and higher breakdown voltage when compared with the soldered counterpart. Accelerated thermal cycling aging tests validate the stability of the insulation ring for LM-based packaging, especially under high-temperature conditions. The feasibility of using LM fluidic interconnections for a floating die structure of SiC packaging is validated.</description><subject>Casting</subject><subject>Circuit boards</subject><subject>Electrical conduction</subject><subject>Electronic packaging</subject><subject>Electronic packaging thermal management</subject><subject>Feasibility</subject><subject>Finite element method</subject><subject>High temperature</subject><subject>Insulation</subject><subject>Liquid metal (LM)</subject><subject>Liquid metals</subject><subject>Liquids</subject><subject>Metals</subject><subject>Modulus of elasticity</subject><subject>Packaging</subject><subject>printed circuit board (PCB)/direct bond copper (DBC) hybrid packaging</subject><subject>Printed circuit boards</subject><subject>Printed circuits</subject><subject>reliability</subject><subject>Shear stress</subject><subject>SiC packaging</subject><subject>Silicon carbide</subject><subject>Stress</subject><subject>Substrates</subject><subject>Thermal cycling</subject><subject>Thermal expansion</subject><subject>Thermal stresses</subject><subject>thermomechanical stress</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1PAjEQhhujiYj-ABMPTTwvdvaDbY8GQU0wkoDnzdCdheKyhXY3xKu_3BI4eJrJ5HnfSR7G7kEMAIR6WszG00Es4nSQJLmCGC5YD1QKkQCRX7KekDKLpFLJNbvxfiMEpJmAHvudmn1nSv5BLdZ8UofdaD6yTUO6Nbbh2JThbLE1zYq_GOLz1nW67Rzxyjr-VbcOa3vgizW5rd2SXmNjdOgKHHnPbcXnZsRn9kCOj-vQ6mwAPJ-h_sZVaL1lVxXWnu7Os88Wk_Fi9BZNP1_fR8_TSMdStRGVGYCmPFEKlkut01TSUMqq1KRKLJGwwjjOYy3LlCDLMc5RJYD5EkmrZdJnj6fanbP7jnxbbGznmvCxSEQ2FGIIKg8UnCjtrPeOqmLnzBbdTwGiOJoujqaLo-nibDpkHk4ZQ0T_-FSKTInkDxEtfS0</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Mu, Wei</creator><creator>Janabi, Ameer</creator><creator>Hu, Borong</creator><creator>Shillaber, Luke</creator><creator>Long, Teng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4088-5013</orcidid><orcidid>https://orcid.org/0000-0001-7730-1600</orcidid><orcidid>https://orcid.org/0000-0003-4401-102X</orcidid><orcidid>https://orcid.org/0000-0002-5030-9554</orcidid><orcidid>https://orcid.org/0000-0002-6582-5551</orcidid></search><sort><creationdate>20240701</creationdate><title>Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging</title><author>Mu, Wei ; Janabi, Ameer ; Hu, Borong ; Shillaber, Luke ; Long, Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Casting</topic><topic>Circuit boards</topic><topic>Electrical conduction</topic><topic>Electronic packaging</topic><topic>Electronic packaging thermal management</topic><topic>Feasibility</topic><topic>Finite element method</topic><topic>High temperature</topic><topic>Insulation</topic><topic>Liquid metal (LM)</topic><topic>Liquid metals</topic><topic>Liquids</topic><topic>Metals</topic><topic>Modulus of elasticity</topic><topic>Packaging</topic><topic>printed circuit board (PCB)/direct bond copper (DBC) hybrid packaging</topic><topic>Printed circuit boards</topic><topic>Printed circuits</topic><topic>reliability</topic><topic>Shear stress</topic><topic>SiC packaging</topic><topic>Silicon carbide</topic><topic>Stress</topic><topic>Substrates</topic><topic>Thermal cycling</topic><topic>Thermal expansion</topic><topic>Thermal stresses</topic><topic>thermomechanical stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Janabi, Ameer</creatorcontrib><creatorcontrib>Hu, Borong</creatorcontrib><creatorcontrib>Shillaber, Luke</creatorcontrib><creatorcontrib>Long, Teng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Wei</au><au>Janabi, Ameer</au><au>Hu, Borong</au><au>Shillaber, Luke</au><au>Long, Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>39</volume><issue>7</issue><spage>7808</spage><epage>7814</epage><pages>7808-7814</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Coefficients of thermal expansion (CTE) of various materials in packaging structure layers vary largely, causing significant thermomechanical stress in power electronic packages during operation. For wirebondless SiC modules, the stress is even larger due to the structure's rigidity and the high Young's modulus of SiC crystals. This letter takes a flexible printed circuit board (FPCB)/die/active metal brazed (AMB) packaging stack as an example to prove the feasibility of floating die structure enabled by liquid metal (LM) fluidic connection. The CTE mismatch among the die, printed circuit board, and AMB substrate is decoupled by the LM layer without compromise of thermal and electrical conduction. The finite-element analysis demonstrates a 56% reduction in von Mises stress of the device and more than 99% shear stress reduction at the FPCB-AMB interface, compared with a conventional rigid solder connection. Testing results show that LM-based packaging has a similar thermal and electrical conduction and higher breakdown voltage when compared with the soldered counterpart. Accelerated thermal cycling aging tests validate the stability of the insulation ring for LM-based packaging, especially under high-temperature conditions. The feasibility of using LM fluidic interconnections for a floating die structure of SiC packaging is validated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2024.3379121</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4088-5013</orcidid><orcidid>https://orcid.org/0000-0001-7730-1600</orcidid><orcidid>https://orcid.org/0000-0003-4401-102X</orcidid><orcidid>https://orcid.org/0000-0002-5030-9554</orcidid><orcidid>https://orcid.org/0000-0002-6582-5551</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2024-07, Vol.39 (7), p.7808-7814
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_10480590
source IEEE Electronic Library (IEL) Journals
subjects Casting
Circuit boards
Electrical conduction
Electronic packaging
Electronic packaging thermal management
Feasibility
Finite element method
High temperature
Insulation
Liquid metal (LM)
Liquid metals
Liquids
Metals
Modulus of elasticity
Packaging
printed circuit board (PCB)/direct bond copper (DBC) hybrid packaging
Printed circuit boards
Printed circuits
reliability
Shear stress
SiC packaging
Silicon carbide
Stress
Substrates
Thermal cycling
Thermal expansion
Thermal stresses
thermomechanical stress
title Liquid Metal Fluidic Connection and Floating Die Structure for Ultralow Thermomechanical Stress of SiC Power Electronics Packaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20Metal%20Fluidic%20Connection%20and%20Floating%20Die%20Structure%20for%20Ultralow%20Thermomechanical%20Stress%20of%20SiC%20Power%20Electronics%20Packaging&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Mu,%20Wei&rft.date=2024-07-01&rft.volume=39&rft.issue=7&rft.spage=7808&rft.epage=7814&rft.pages=7808-7814&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3379121&rft_dat=%3Cproquest_ieee_%3E3056006197%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ed511ce73991bbcc448e688fdce9dadaeafa2272c8d4e157a27a931a7baec9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3056006197&rft_id=info:pmid/&rft_ieee_id=10480590&rfr_iscdi=true