Loading…

Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy

Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than...

Full description

Saved in:
Bibliographic Details
Main Authors: Kalita, P., Cochrane, K., Knudson, M., Ao, T., Hanshaw, H., Crockett, S., Swift, D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title
container_volume
creator Kalita, P.
Cochrane, K.
Knudson, M.
Ao, T.
Hanshaw, H.
Crockett, S.
Swift, D.
description Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa with high-fidelity experimental shock compression data measured on Sandia's Z machine. A highly reliable multiphase Equation of State (EOS) for Ti64 is developed, spanning a broad range of temperature and pressures. Results demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modelled.
doi_str_mv 10.1109/ICOPS45740.2023.10481182
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10481182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10481182</ieee_id><sourcerecordid>10481182</sourcerecordid><originalsourceid>FETCH-LOGICAL-i992-924e9763403caa8de5dd1a1ba4cb7a026c2a4a36e44f7ac6be5970f484803cfb3</originalsourceid><addsrcrecordid>eNo1j9tKw0AYhFdBsNa-gRf7Aol7yh4uS6habIjQeONN-ZP80ZU0KdkE7Ns3oF4NAzPDN4RQzmLOmXvcpvnbXiVGsVgwIWPOlOXciiuycsZZmTDJhNbsmixEYnRkBLO35C6EbzbHndML8ppN7eijrISBftDNzwkHf8RuDBS6mm7yPc36GlvffdK-oeMXzj6M9D1gM7W08CN0fjrSddv253ty00AbcPWnS1I8bYr0Jdrlz9t0vYu8cyJyQqEzWiomKwBbY1LXHHgJqioNzLyVAAVSo1KNgUqXmDjDGmWVnRtNKZfk4XfWI-LhNPPCcD78f5cXkuhOGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy</title><source>IEEE Xplore All Conference Series</source><creator>Kalita, P. ; Cochrane, K. ; Knudson, M. ; Ao, T. ; Hanshaw, H. ; Crockett, S. ; Swift, D.</creator><creatorcontrib>Kalita, P. ; Cochrane, K. ; Knudson, M. ; Ao, T. ; Hanshaw, H. ; Crockett, S. ; Swift, D.</creatorcontrib><description>Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa with high-fidelity experimental shock compression data measured on Sandia's Z machine. A highly reliable multiphase Equation of State (EOS) for Ti64 is developed, spanning a broad range of temperature and pressures. Results demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modelled.</description><identifier>EISSN: 2576-7208</identifier><identifier>EISBN: 9798350302660</identifier><identifier>DOI: 10.1109/ICOPS45740.2023.10481182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Earth Observing System ; Electric shock ; Mathematical models ; Plasmas ; Temperature distribution ; Temperature measurement ; Titanium alloys</subject><ispartof>2023 IEEE International Conference on Plasma Science (ICOPS), 2023, p.1-1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10481182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10481182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalita, P.</creatorcontrib><creatorcontrib>Cochrane, K.</creatorcontrib><creatorcontrib>Knudson, M.</creatorcontrib><creatorcontrib>Ao, T.</creatorcontrib><creatorcontrib>Hanshaw, H.</creatorcontrib><creatorcontrib>Crockett, S.</creatorcontrib><creatorcontrib>Swift, D.</creatorcontrib><title>Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy</title><title>2023 IEEE International Conference on Plasma Science (ICOPS)</title><addtitle>ICOPS</addtitle><description>Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa with high-fidelity experimental shock compression data measured on Sandia's Z machine. A highly reliable multiphase Equation of State (EOS) for Ti64 is developed, spanning a broad range of temperature and pressures. Results demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modelled.</description><subject>Earth Observing System</subject><subject>Electric shock</subject><subject>Mathematical models</subject><subject>Plasmas</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Titanium alloys</subject><issn>2576-7208</issn><isbn>9798350302660</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9tKw0AYhFdBsNa-gRf7Aol7yh4uS6habIjQeONN-ZP80ZU0KdkE7Ns3oF4NAzPDN4RQzmLOmXvcpvnbXiVGsVgwIWPOlOXciiuycsZZmTDJhNbsmixEYnRkBLO35C6EbzbHndML8ppN7eijrISBftDNzwkHf8RuDBS6mm7yPc36GlvffdK-oeMXzj6M9D1gM7W08CN0fjrSddv253ty00AbcPWnS1I8bYr0Jdrlz9t0vYu8cyJyQqEzWiomKwBbY1LXHHgJqioNzLyVAAVSo1KNgUqXmDjDGmWVnRtNKZfk4XfWI-LhNPPCcD78f5cXkuhOGA</recordid><startdate>20230521</startdate><enddate>20230521</enddate><creator>Kalita, P.</creator><creator>Cochrane, K.</creator><creator>Knudson, M.</creator><creator>Ao, T.</creator><creator>Hanshaw, H.</creator><creator>Crockett, S.</creator><creator>Swift, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230521</creationdate><title>Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy</title><author>Kalita, P. ; Cochrane, K. ; Knudson, M. ; Ao, T. ; Hanshaw, H. ; Crockett, S. ; Swift, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i992-924e9763403caa8de5dd1a1ba4cb7a026c2a4a36e44f7ac6be5970f484803cfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earth Observing System</topic><topic>Electric shock</topic><topic>Mathematical models</topic><topic>Plasmas</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Titanium alloys</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalita, P.</creatorcontrib><creatorcontrib>Cochrane, K.</creatorcontrib><creatorcontrib>Knudson, M.</creatorcontrib><creatorcontrib>Ao, T.</creatorcontrib><creatorcontrib>Hanshaw, H.</creatorcontrib><creatorcontrib>Crockett, S.</creatorcontrib><creatorcontrib>Swift, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalita, P.</au><au>Cochrane, K.</au><au>Knudson, M.</au><au>Ao, T.</au><au>Hanshaw, H.</au><au>Crockett, S.</au><au>Swift, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy</atitle><btitle>2023 IEEE International Conference on Plasma Science (ICOPS)</btitle><stitle>ICOPS</stitle><date>2023-05-21</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2576-7208</eissn><eisbn>9798350302660</eisbn><abstract>Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa with high-fidelity experimental shock compression data measured on Sandia's Z machine. A highly reliable multiphase Equation of State (EOS) for Ti64 is developed, spanning a broad range of temperature and pressures. Results demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modelled.</abstract><pub>IEEE</pub><doi>10.1109/ICOPS45740.2023.10481182</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-7208
ispartof 2023 IEEE International Conference on Plasma Science (ICOPS), 2023, p.1-1
issn 2576-7208
language eng
recordid cdi_ieee_primary_10481182
source IEEE Xplore All Conference Series
subjects Earth Observing System
Electric shock
Mathematical models
Plasmas
Temperature distribution
Temperature measurement
Titanium alloys
title Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Mbar%20Z%20Experiments%20and%20EOS%20Modeling%20of%20the%20Most%20Useful%20Titanium%20Alloy&rft.btitle=2023%20IEEE%20International%20Conference%20on%20Plasma%20Science%20(ICOPS)&rft.au=Kalita,%20P.&rft.date=2023-05-21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2576-7208&rft_id=info:doi/10.1109/ICOPS45740.2023.10481182&rft.eisbn=9798350302660&rft_dat=%3Cieee_CHZPO%3E10481182%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i992-924e9763403caa8de5dd1a1ba4cb7a026c2a4a36e44f7ac6be5970f484803cfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10481182&rfr_iscdi=true