Loading…
Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy
Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kalita, P. Cochrane, K. Knudson, M. Ao, T. Hanshaw, H. Crockett, S. Swift, D. |
description | Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa with high-fidelity experimental shock compression data measured on Sandia's Z machine. A highly reliable multiphase Equation of State (EOS) for Ti64 is developed, spanning a broad range of temperature and pressures. Results demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modelled. |
doi_str_mv | 10.1109/ICOPS45740.2023.10481182 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10481182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10481182</ieee_id><sourcerecordid>10481182</sourcerecordid><originalsourceid>FETCH-LOGICAL-i992-924e9763403caa8de5dd1a1ba4cb7a026c2a4a36e44f7ac6be5970f484803cfb3</originalsourceid><addsrcrecordid>eNo1j9tKw0AYhFdBsNa-gRf7Aol7yh4uS6habIjQeONN-ZP80ZU0KdkE7Ns3oF4NAzPDN4RQzmLOmXvcpvnbXiVGsVgwIWPOlOXciiuycsZZmTDJhNbsmixEYnRkBLO35C6EbzbHndML8ppN7eijrISBftDNzwkHf8RuDBS6mm7yPc36GlvffdK-oeMXzj6M9D1gM7W08CN0fjrSddv253ty00AbcPWnS1I8bYr0Jdrlz9t0vYu8cyJyQqEzWiomKwBbY1LXHHgJqioNzLyVAAVSo1KNgUqXmDjDGmWVnRtNKZfk4XfWI-LhNPPCcD78f5cXkuhOGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy</title><source>IEEE Xplore All Conference Series</source><creator>Kalita, P. ; Cochrane, K. ; Knudson, M. ; Ao, T. ; Hanshaw, H. ; Crockett, S. ; Swift, D.</creator><creatorcontrib>Kalita, P. ; Cochrane, K. ; Knudson, M. ; Ao, T. ; Hanshaw, H. ; Crockett, S. ; Swift, D.</creatorcontrib><description>Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa with high-fidelity experimental shock compression data measured on Sandia's Z machine. A highly reliable multiphase Equation of State (EOS) for Ti64 is developed, spanning a broad range of temperature and pressures. Results demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modelled.</description><identifier>EISSN: 2576-7208</identifier><identifier>EISBN: 9798350302660</identifier><identifier>DOI: 10.1109/ICOPS45740.2023.10481182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Earth Observing System ; Electric shock ; Mathematical models ; Plasmas ; Temperature distribution ; Temperature measurement ; Titanium alloys</subject><ispartof>2023 IEEE International Conference on Plasma Science (ICOPS), 2023, p.1-1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10481182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10481182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalita, P.</creatorcontrib><creatorcontrib>Cochrane, K.</creatorcontrib><creatorcontrib>Knudson, M.</creatorcontrib><creatorcontrib>Ao, T.</creatorcontrib><creatorcontrib>Hanshaw, H.</creatorcontrib><creatorcontrib>Crockett, S.</creatorcontrib><creatorcontrib>Swift, D.</creatorcontrib><title>Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy</title><title>2023 IEEE International Conference on Plasma Science (ICOPS)</title><addtitle>ICOPS</addtitle><description>Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa with high-fidelity experimental shock compression data measured on Sandia's Z machine. A highly reliable multiphase Equation of State (EOS) for Ti64 is developed, spanning a broad range of temperature and pressures. Results demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modelled.</description><subject>Earth Observing System</subject><subject>Electric shock</subject><subject>Mathematical models</subject><subject>Plasmas</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Titanium alloys</subject><issn>2576-7208</issn><isbn>9798350302660</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9tKw0AYhFdBsNa-gRf7Aol7yh4uS6habIjQeONN-ZP80ZU0KdkE7Ns3oF4NAzPDN4RQzmLOmXvcpvnbXiVGsVgwIWPOlOXciiuycsZZmTDJhNbsmixEYnRkBLO35C6EbzbHndML8ppN7eijrISBftDNzwkHf8RuDBS6mm7yPc36GlvffdK-oeMXzj6M9D1gM7W08CN0fjrSddv253ty00AbcPWnS1I8bYr0Jdrlz9t0vYu8cyJyQqEzWiomKwBbY1LXHHgJqioNzLyVAAVSo1KNgUqXmDjDGmWVnRtNKZfk4XfWI-LhNPPCcD78f5cXkuhOGA</recordid><startdate>20230521</startdate><enddate>20230521</enddate><creator>Kalita, P.</creator><creator>Cochrane, K.</creator><creator>Knudson, M.</creator><creator>Ao, T.</creator><creator>Hanshaw, H.</creator><creator>Crockett, S.</creator><creator>Swift, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230521</creationdate><title>Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy</title><author>Kalita, P. ; Cochrane, K. ; Knudson, M. ; Ao, T. ; Hanshaw, H. ; Crockett, S. ; Swift, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i992-924e9763403caa8de5dd1a1ba4cb7a026c2a4a36e44f7ac6be5970f484803cfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earth Observing System</topic><topic>Electric shock</topic><topic>Mathematical models</topic><topic>Plasmas</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Titanium alloys</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalita, P.</creatorcontrib><creatorcontrib>Cochrane, K.</creatorcontrib><creatorcontrib>Knudson, M.</creatorcontrib><creatorcontrib>Ao, T.</creatorcontrib><creatorcontrib>Hanshaw, H.</creatorcontrib><creatorcontrib>Crockett, S.</creatorcontrib><creatorcontrib>Swift, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalita, P.</au><au>Cochrane, K.</au><au>Knudson, M.</au><au>Ao, T.</au><au>Hanshaw, H.</au><au>Crockett, S.</au><au>Swift, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy</atitle><btitle>2023 IEEE International Conference on Plasma Science (ICOPS)</btitle><stitle>ICOPS</stitle><date>2023-05-21</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2576-7208</eissn><eisbn>9798350302660</eisbn><abstract>Cutting edge shock compression research is moving towards ever increasing pressure or stress states into the Multi-Mbar range. The simple empirical material model approximations of the past are not adequate at these new pressure extremes. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa with high-fidelity experimental shock compression data measured on Sandia's Z machine. A highly reliable multiphase Equation of State (EOS) for Ti64 is developed, spanning a broad range of temperature and pressures. Results demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modelled.</abstract><pub>IEEE</pub><doi>10.1109/ICOPS45740.2023.10481182</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2576-7208 |
ispartof | 2023 IEEE International Conference on Plasma Science (ICOPS), 2023, p.1-1 |
issn | 2576-7208 |
language | eng |
recordid | cdi_ieee_primary_10481182 |
source | IEEE Xplore All Conference Series |
subjects | Earth Observing System Electric shock Mathematical models Plasmas Temperature distribution Temperature measurement Titanium alloys |
title | Multi-Mbar Z Experiments and EOS Modeling of the Most Useful Titanium Alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Mbar%20Z%20Experiments%20and%20EOS%20Modeling%20of%20the%20Most%20Useful%20Titanium%20Alloy&rft.btitle=2023%20IEEE%20International%20Conference%20on%20Plasma%20Science%20(ICOPS)&rft.au=Kalita,%20P.&rft.date=2023-05-21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2576-7208&rft_id=info:doi/10.1109/ICOPS45740.2023.10481182&rft.eisbn=9798350302660&rft_dat=%3Cieee_CHZPO%3E10481182%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i992-924e9763403caa8de5dd1a1ba4cb7a026c2a4a36e44f7ac6be5970f484803cfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10481182&rfr_iscdi=true |