Loading…

Fully Kinetic Modeling of Emissive Sheaths in Hypersonic Boundary Layer Plasmas

Electrostatic Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods are used to model thermionic emissions from an emitting wall in partially ionized boundary layer plasmas in the hypersonic regime. Emissive sheaths submersed in a high-density (\sim 10^{16}\mathrm{m}^{3}) plasma ar...

Full description

Saved in:
Bibliographic Details
Main Authors: Vatansever, D., Nuwal, N., Levin, D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title
container_volume
creator Vatansever, D.
Nuwal, N.
Levin, D.
description Electrostatic Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods are used to model thermionic emissions from an emitting wall in partially ionized boundary layer plasmas in the hypersonic regime. Emissive sheaths submersed in a high-density (\sim 10^{16}\mathrm{m}^{3}) plasma are examined using a PIC-DSMC solver, CHAOS l . We will show that collisionless emissive sheaths with plasma domains of sufficient length (30 and 60 Debye lengths, \lambda_{\mathrm{D}} ) are subject to strong oscillations in the quasi-neutral region due to a two-stream electron instability. The dispersion relation for the two-stream instability is solved to determine a minimum domain size (\sim 18\lambda_{\mathrm{D}}) for instabilities to occur. The most dominant frequencies (\omega)) and wavenumbers (k) in our PIC simulations are shown to be in the range of 0-2 \text{GHz}\ (\omega:0-1.1\omega \text{pe}) and 625 - 10,000 \mathrm{m}^{-1}(\mathrm{k}\lambda_{\mathrm{D}}:0.017-0.27^{1}) respectively, for the case with long domain size, 60 \lambda_{\mathrm{D}} .The effect of ion-neutral collisions (MEX and CEX) are analyzed for low- (\sim 10^{19}\mathrm{m}^{-3}) and high- (\sim 10^{20}\mathrm{m}^{-3}) , cold (\sim 300\mathrm{K}) and hot (\sim 2,000\mathrm{K}) neutral density backgrounds. We plan to show the trapping mechanism of slow CEX ions inside the virtual cathode (VC). With CEX ion-trapping, we find that thermionic emission from the wall can be increased by %8 compared to the collisionless case.
doi_str_mv 10.1109/ICOPS45740.2023.10481419
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10481419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10481419</ieee_id><sourcerecordid>10481419</sourcerecordid><originalsourceid>FETCH-LOGICAL-i493-495384491bc80c240e39bdc98320a7c6c682bf5dedbb0be42e7024667211f64a3</originalsourceid><addsrcrecordid>eNo1j8tKw0AYRkdBsNa-gYt5gcR_LpnLUktri5EU2n2ZTP7YkVxKphXy9gbU1bc5fJxDCGWQMgb2ebssdnuZaQkpBy5SBtIwyewNWVhtjchAAFcKbsmMZ1olmoO5Jw8xfsGEW6tmpFhfm2ak76HDS_D0o6-wCd0n7Wu6akOM4Rvp_oTucoo0dHQznnGIfTehr_21q9ww0tyNONBd42Lr4iO5q10TcfG3c3JYrw7LTZIXb9vlS54EaUUibSaMlJaV3oDnElDYsvKTMgenvfLK8LLOKqzKEkqUHDVwqZTmjNVKOjEnT7-3ARGP5yG0k8nxv1_8AHWFT6U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fully Kinetic Modeling of Emissive Sheaths in Hypersonic Boundary Layer Plasmas</title><source>IEEE Xplore All Conference Series</source><creator>Vatansever, D. ; Nuwal, N. ; Levin, D.</creator><creatorcontrib>Vatansever, D. ; Nuwal, N. ; Levin, D.</creatorcontrib><description>Electrostatic Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods are used to model thermionic emissions from an emitting wall in partially ionized boundary layer plasmas in the hypersonic regime. Emissive sheaths submersed in a high-density (\sim 10^{16}\mathrm{m}^{3}) plasma are examined using a PIC-DSMC solver, CHAOS l . We will show that collisionless emissive sheaths with plasma domains of sufficient length (30 and 60 Debye lengths, \lambda_{\mathrm{D}} ) are subject to strong oscillations in the quasi-neutral region due to a two-stream electron instability. The dispersion relation for the two-stream instability is solved to determine a minimum domain size (\sim 18\lambda_{\mathrm{D}}) for instabilities to occur. The most dominant frequencies (\omega)) and wavenumbers (k) in our PIC simulations are shown to be in the range of 0-2 \text{GHz}\ (\omega:0-1.1\omega \text{pe}) and 625 - 10,000 \mathrm{m}^{-1}(\mathrm{k}\lambda_{\mathrm{D}}:0.017-0.27^{1}) respectively, for the case with long domain size, 60 \lambda_{\mathrm{D}} .The effect of ion-neutral collisions (MEX and CEX) are analyzed for low- (\sim 10^{19}\mathrm{m}^{-3}) and high- (\sim 10^{20}\mathrm{m}^{-3}) , cold (\sim 300\mathrm{K}) and hot (\sim 2,000\mathrm{K}) neutral density backgrounds. We plan to show the trapping mechanism of slow CEX ions inside the virtual cathode (VC). With CEX ion-trapping, we find that thermionic emission from the wall can be increased by %8 compared to the collisionless case.</description><identifier>EISSN: 2576-7208</identifier><identifier>EISBN: 9798350302660</identifier><identifier>DOI: 10.1109/ICOPS45740.2023.10481419</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrostatics ; Frequency-domain analysis ; Ions ; Kinetic theory ; Monte Carlo methods ; Plasmas ; Thermionic emission</subject><ispartof>2023 IEEE International Conference on Plasma Science (ICOPS), 2023, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10481419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10481419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vatansever, D.</creatorcontrib><creatorcontrib>Nuwal, N.</creatorcontrib><creatorcontrib>Levin, D.</creatorcontrib><title>Fully Kinetic Modeling of Emissive Sheaths in Hypersonic Boundary Layer Plasmas</title><title>2023 IEEE International Conference on Plasma Science (ICOPS)</title><addtitle>ICOPS</addtitle><description>Electrostatic Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods are used to model thermionic emissions from an emitting wall in partially ionized boundary layer plasmas in the hypersonic regime. Emissive sheaths submersed in a high-density (\sim 10^{16}\mathrm{m}^{3}) plasma are examined using a PIC-DSMC solver, CHAOS l . We will show that collisionless emissive sheaths with plasma domains of sufficient length (30 and 60 Debye lengths, \lambda_{\mathrm{D}} ) are subject to strong oscillations in the quasi-neutral region due to a two-stream electron instability. The dispersion relation for the two-stream instability is solved to determine a minimum domain size (\sim 18\lambda_{\mathrm{D}}) for instabilities to occur. The most dominant frequencies (\omega)) and wavenumbers (k) in our PIC simulations are shown to be in the range of 0-2 \text{GHz}\ (\omega:0-1.1\omega \text{pe}) and 625 - 10,000 \mathrm{m}^{-1}(\mathrm{k}\lambda_{\mathrm{D}}:0.017-0.27^{1}) respectively, for the case with long domain size, 60 \lambda_{\mathrm{D}} .The effect of ion-neutral collisions (MEX and CEX) are analyzed for low- (\sim 10^{19}\mathrm{m}^{-3}) and high- (\sim 10^{20}\mathrm{m}^{-3}) , cold (\sim 300\mathrm{K}) and hot (\sim 2,000\mathrm{K}) neutral density backgrounds. We plan to show the trapping mechanism of slow CEX ions inside the virtual cathode (VC). With CEX ion-trapping, we find that thermionic emission from the wall can be increased by %8 compared to the collisionless case.</description><subject>Electrostatics</subject><subject>Frequency-domain analysis</subject><subject>Ions</subject><subject>Kinetic theory</subject><subject>Monte Carlo methods</subject><subject>Plasmas</subject><subject>Thermionic emission</subject><issn>2576-7208</issn><isbn>9798350302660</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKw0AYRkdBsNa-gYt5gcR_LpnLUktri5EU2n2ZTP7YkVxKphXy9gbU1bc5fJxDCGWQMgb2ebssdnuZaQkpBy5SBtIwyewNWVhtjchAAFcKbsmMZ1olmoO5Jw8xfsGEW6tmpFhfm2ak76HDS_D0o6-wCd0n7Wu6akOM4Rvp_oTucoo0dHQznnGIfTehr_21q9ww0tyNONBd42Lr4iO5q10TcfG3c3JYrw7LTZIXb9vlS54EaUUibSaMlJaV3oDnElDYsvKTMgenvfLK8LLOKqzKEkqUHDVwqZTmjNVKOjEnT7-3ARGP5yG0k8nxv1_8AHWFT6U</recordid><startdate>20230521</startdate><enddate>20230521</enddate><creator>Vatansever, D.</creator><creator>Nuwal, N.</creator><creator>Levin, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230521</creationdate><title>Fully Kinetic Modeling of Emissive Sheaths in Hypersonic Boundary Layer Plasmas</title><author>Vatansever, D. ; Nuwal, N. ; Levin, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i493-495384491bc80c240e39bdc98320a7c6c682bf5dedbb0be42e7024667211f64a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrostatics</topic><topic>Frequency-domain analysis</topic><topic>Ions</topic><topic>Kinetic theory</topic><topic>Monte Carlo methods</topic><topic>Plasmas</topic><topic>Thermionic emission</topic><toplevel>online_resources</toplevel><creatorcontrib>Vatansever, D.</creatorcontrib><creatorcontrib>Nuwal, N.</creatorcontrib><creatorcontrib>Levin, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vatansever, D.</au><au>Nuwal, N.</au><au>Levin, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fully Kinetic Modeling of Emissive Sheaths in Hypersonic Boundary Layer Plasmas</atitle><btitle>2023 IEEE International Conference on Plasma Science (ICOPS)</btitle><stitle>ICOPS</stitle><date>2023-05-21</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2576-7208</eissn><eisbn>9798350302660</eisbn><abstract>Electrostatic Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods are used to model thermionic emissions from an emitting wall in partially ionized boundary layer plasmas in the hypersonic regime. Emissive sheaths submersed in a high-density (\sim 10^{16}\mathrm{m}^{3}) plasma are examined using a PIC-DSMC solver, CHAOS l . We will show that collisionless emissive sheaths with plasma domains of sufficient length (30 and 60 Debye lengths, \lambda_{\mathrm{D}} ) are subject to strong oscillations in the quasi-neutral region due to a two-stream electron instability. The dispersion relation for the two-stream instability is solved to determine a minimum domain size (\sim 18\lambda_{\mathrm{D}}) for instabilities to occur. The most dominant frequencies (\omega)) and wavenumbers (k) in our PIC simulations are shown to be in the range of 0-2 \text{GHz}\ (\omega:0-1.1\omega \text{pe}) and 625 - 10,000 \mathrm{m}^{-1}(\mathrm{k}\lambda_{\mathrm{D}}:0.017-0.27^{1}) respectively, for the case with long domain size, 60 \lambda_{\mathrm{D}} .The effect of ion-neutral collisions (MEX and CEX) are analyzed for low- (\sim 10^{19}\mathrm{m}^{-3}) and high- (\sim 10^{20}\mathrm{m}^{-3}) , cold (\sim 300\mathrm{K}) and hot (\sim 2,000\mathrm{K}) neutral density backgrounds. We plan to show the trapping mechanism of slow CEX ions inside the virtual cathode (VC). With CEX ion-trapping, we find that thermionic emission from the wall can be increased by %8 compared to the collisionless case.</abstract><pub>IEEE</pub><doi>10.1109/ICOPS45740.2023.10481419</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-7208
ispartof 2023 IEEE International Conference on Plasma Science (ICOPS), 2023, p.1-1
issn 2576-7208
language eng
recordid cdi_ieee_primary_10481419
source IEEE Xplore All Conference Series
subjects Electrostatics
Frequency-domain analysis
Ions
Kinetic theory
Monte Carlo methods
Plasmas
Thermionic emission
title Fully Kinetic Modeling of Emissive Sheaths in Hypersonic Boundary Layer Plasmas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fully%20Kinetic%20Modeling%20of%20Emissive%20Sheaths%20in%20Hypersonic%20Boundary%20Layer%20Plasmas&rft.btitle=2023%20IEEE%20International%20Conference%20on%20Plasma%20Science%20(ICOPS)&rft.au=Vatansever,%20D.&rft.date=2023-05-21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2576-7208&rft_id=info:doi/10.1109/ICOPS45740.2023.10481419&rft.eisbn=9798350302660&rft_dat=%3Cieee_CHZPO%3E10481419%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i493-495384491bc80c240e39bdc98320a7c6c682bf5dedbb0be42e7024667211f64a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10481419&rfr_iscdi=true