Loading…

OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks

Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinge...

Full description

Saved in:
Bibliographic Details
Main Authors: P, Sujitha S, Anita, C. S., Sudharson, K., Rose, S. Remya, S, Sharmila, V, Keerthana
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator P, Sujitha S
Anita, C. S.
Sudharson, K.
Rose, S. Remya
S, Sharmila
V, Keerthana
description Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinges on meticulous learning rate tuning, a crucial ANN hyperparameter. With the Adam optimizer, OptiANN-LR efficiently converges, and dropout layers curb overfitting, ensuring robust generalization. These enhancements promise early diabetes diagnosis and prevention. Rigorous evaluations employing k-fold cross-validation and diverse metrics affirm OptiANN-LR's reliability. Our work showcases advanced machine learning in healthcare, especially diabetes prediction, advancing data-driven approaches. This research heralds more accurate healthcare solutions, potentially benefiting millions at risk of diabetes and facilitating proactive interventions.
doi_str_mv 10.1109/SCEECS61402.2024.10481943
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10481943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10481943</ieee_id><sourcerecordid>10481943</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-ba3b2b27b935826c28639e96d25933505141685b6c2361cab1fc41274632c9ec3</originalsourceid><addsrcrecordid>eNo1kM1OAjEcxKuJiQR5Aw_1ARb7td3W22ZFMdmAATyTtvsHqrCQbjcEDz67ix-nmWQyv2QGoTtKhpQSfT8vRqNiLqkgbMgIE0NKhKJa8As00JlWPCVcKCHJJeoxqVRCmFLXaNA074QQzgjPiO6hr-kh-nwyScrZA87b9Q7q6Os1fvTGQoQGvwaovIt-X-PcuTYYd8JxE_bteoPHpwMEXIIJ9bkzMxHwov3xvsZn8s5_QoXzEP3KO2-2eAId4izxuA8fzQ26WpltA4M_7aO3p9GiGCfl9PmlyMvEU6pjYg23zLLMap4qJh1TkmvQsmKp5t3SlAoqVWq7hEvqjKUrJyjLhOTMaXC8j25_uR4Alofgdyaclv-X8W9LXWFL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>P, Sujitha S ; Anita, C. S. ; Sudharson, K. ; Rose, S. Remya ; S, Sharmila ; V, Keerthana</creator><creatorcontrib>P, Sujitha S ; Anita, C. S. ; Sudharson, K. ; Rose, S. Remya ; S, Sharmila ; V, Keerthana</creatorcontrib><description>Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinges on meticulous learning rate tuning, a crucial ANN hyperparameter. With the Adam optimizer, OptiANN-LR efficiently converges, and dropout layers curb overfitting, ensuring robust generalization. These enhancements promise early diabetes diagnosis and prevention. Rigorous evaluations employing k-fold cross-validation and diverse metrics affirm OptiANN-LR's reliability. Our work showcases advanced machine learning in healthcare, especially diabetes prediction, advancing data-driven approaches. This research heralds more accurate healthcare solutions, potentially benefiting millions at risk of diabetes and facilitating proactive interventions.</description><identifier>EISSN: 2688-0288</identifier><identifier>EISBN: 9798350348460</identifier><identifier>DOI: 10.1109/SCEECS61402.2024.10481943</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Diabetes ; diabetes prediction ; early diagnosis ; hyperparameter tuning ; Learning (artificial intelligence) ; machine learning in healthcare ; Medical services ; Parallel processing ; Software ; Training</subject><ispartof>2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10481943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10481943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>P, Sujitha S</creatorcontrib><creatorcontrib>Anita, C. S.</creatorcontrib><creatorcontrib>Sudharson, K.</creatorcontrib><creatorcontrib>Rose, S. Remya</creatorcontrib><creatorcontrib>S, Sharmila</creatorcontrib><creatorcontrib>V, Keerthana</creatorcontrib><title>OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks</title><title>2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)</title><addtitle>SCEECS</addtitle><description>Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinges on meticulous learning rate tuning, a crucial ANN hyperparameter. With the Adam optimizer, OptiANN-LR efficiently converges, and dropout layers curb overfitting, ensuring robust generalization. These enhancements promise early diabetes diagnosis and prevention. Rigorous evaluations employing k-fold cross-validation and diverse metrics affirm OptiANN-LR's reliability. Our work showcases advanced machine learning in healthcare, especially diabetes prediction, advancing data-driven approaches. This research heralds more accurate healthcare solutions, potentially benefiting millions at risk of diabetes and facilitating proactive interventions.</description><subject>Artificial neural networks</subject><subject>Diabetes</subject><subject>diabetes prediction</subject><subject>early diagnosis</subject><subject>hyperparameter tuning</subject><subject>Learning (artificial intelligence)</subject><subject>machine learning in healthcare</subject><subject>Medical services</subject><subject>Parallel processing</subject><subject>Software</subject><subject>Training</subject><issn>2688-0288</issn><isbn>9798350348460</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1OAjEcxKuJiQR5Aw_1ARb7td3W22ZFMdmAATyTtvsHqrCQbjcEDz67ix-nmWQyv2QGoTtKhpQSfT8vRqNiLqkgbMgIE0NKhKJa8As00JlWPCVcKCHJJeoxqVRCmFLXaNA074QQzgjPiO6hr-kh-nwyScrZA87b9Q7q6Os1fvTGQoQGvwaovIt-X-PcuTYYd8JxE_bteoPHpwMEXIIJ9bkzMxHwov3xvsZn8s5_QoXzEP3KO2-2eAId4izxuA8fzQ26WpltA4M_7aO3p9GiGCfl9PmlyMvEU6pjYg23zLLMap4qJh1TkmvQsmKp5t3SlAoqVWq7hEvqjKUrJyjLhOTMaXC8j25_uR4Alofgdyaclv-X8W9LXWFL</recordid><startdate>20240224</startdate><enddate>20240224</enddate><creator>P, Sujitha S</creator><creator>Anita, C. S.</creator><creator>Sudharson, K.</creator><creator>Rose, S. Remya</creator><creator>S, Sharmila</creator><creator>V, Keerthana</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240224</creationdate><title>OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks</title><author>P, Sujitha S ; Anita, C. S. ; Sudharson, K. ; Rose, S. Remya ; S, Sharmila ; V, Keerthana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-ba3b2b27b935826c28639e96d25933505141685b6c2361cab1fc41274632c9ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Diabetes</topic><topic>diabetes prediction</topic><topic>early diagnosis</topic><topic>hyperparameter tuning</topic><topic>Learning (artificial intelligence)</topic><topic>machine learning in healthcare</topic><topic>Medical services</topic><topic>Parallel processing</topic><topic>Software</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>P, Sujitha S</creatorcontrib><creatorcontrib>Anita, C. S.</creatorcontrib><creatorcontrib>Sudharson, K.</creatorcontrib><creatorcontrib>Rose, S. Remya</creatorcontrib><creatorcontrib>S, Sharmila</creatorcontrib><creatorcontrib>V, Keerthana</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>P, Sujitha S</au><au>Anita, C. S.</au><au>Sudharson, K.</au><au>Rose, S. Remya</au><au>S, Sharmila</au><au>V, Keerthana</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks</atitle><btitle>2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)</btitle><stitle>SCEECS</stitle><date>2024-02-24</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2688-0288</eissn><eisbn>9798350348460</eisbn><abstract>Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinges on meticulous learning rate tuning, a crucial ANN hyperparameter. With the Adam optimizer, OptiANN-LR efficiently converges, and dropout layers curb overfitting, ensuring robust generalization. These enhancements promise early diabetes diagnosis and prevention. Rigorous evaluations employing k-fold cross-validation and diverse metrics affirm OptiANN-LR's reliability. Our work showcases advanced machine learning in healthcare, especially diabetes prediction, advancing data-driven approaches. This research heralds more accurate healthcare solutions, potentially benefiting millions at risk of diabetes and facilitating proactive interventions.</abstract><pub>IEEE</pub><doi>10.1109/SCEECS61402.2024.10481943</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2688-0288
ispartof 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 2024, p.1-5
issn 2688-0288
language eng
recordid cdi_ieee_primary_10481943
source IEEE Xplore All Conference Series
subjects Artificial neural networks
Diabetes
diabetes prediction
early diagnosis
hyperparameter tuning
Learning (artificial intelligence)
machine learning in healthcare
Medical services
Parallel processing
Software
Training
title OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=OptiANN-LR:%20Augmenting%20Diabetes%20Prediction%20Accuracy%20through%20Hyper%20Learning%20Rate%20Tuning%20in%20Optimized%20Artificial%20Neural%20Networks&rft.btitle=2024%20IEEE%20International%20Students'%20Conference%20on%20Electrical,%20Electronics%20and%20Computer%20Science%20(SCEECS)&rft.au=P,%20Sujitha%20S&rft.date=2024-02-24&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2688-0288&rft_id=info:doi/10.1109/SCEECS61402.2024.10481943&rft.eisbn=9798350348460&rft_dat=%3Cieee_CHZPO%3E10481943%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-ba3b2b27b935826c28639e96d25933505141685b6c2361cab1fc41274632c9ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10481943&rfr_iscdi=true