Loading…
OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks
Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinge...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | P, Sujitha S Anita, C. S. Sudharson, K. Rose, S. Remya S, Sharmila V, Keerthana |
description | Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinges on meticulous learning rate tuning, a crucial ANN hyperparameter. With the Adam optimizer, OptiANN-LR efficiently converges, and dropout layers curb overfitting, ensuring robust generalization. These enhancements promise early diabetes diagnosis and prevention. Rigorous evaluations employing k-fold cross-validation and diverse metrics affirm OptiANN-LR's reliability. Our work showcases advanced machine learning in healthcare, especially diabetes prediction, advancing data-driven approaches. This research heralds more accurate healthcare solutions, potentially benefiting millions at risk of diabetes and facilitating proactive interventions. |
doi_str_mv | 10.1109/SCEECS61402.2024.10481943 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10481943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10481943</ieee_id><sourcerecordid>10481943</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-ba3b2b27b935826c28639e96d25933505141685b6c2361cab1fc41274632c9ec3</originalsourceid><addsrcrecordid>eNo1kM1OAjEcxKuJiQR5Aw_1ARb7td3W22ZFMdmAATyTtvsHqrCQbjcEDz67ix-nmWQyv2QGoTtKhpQSfT8vRqNiLqkgbMgIE0NKhKJa8As00JlWPCVcKCHJJeoxqVRCmFLXaNA074QQzgjPiO6hr-kh-nwyScrZA87b9Q7q6Os1fvTGQoQGvwaovIt-X-PcuTYYd8JxE_bteoPHpwMEXIIJ9bkzMxHwov3xvsZn8s5_QoXzEP3KO2-2eAId4izxuA8fzQ26WpltA4M_7aO3p9GiGCfl9PmlyMvEU6pjYg23zLLMap4qJh1TkmvQsmKp5t3SlAoqVWq7hEvqjKUrJyjLhOTMaXC8j25_uR4Alofgdyaclv-X8W9LXWFL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>P, Sujitha S ; Anita, C. S. ; Sudharson, K. ; Rose, S. Remya ; S, Sharmila ; V, Keerthana</creator><creatorcontrib>P, Sujitha S ; Anita, C. S. ; Sudharson, K. ; Rose, S. Remya ; S, Sharmila ; V, Keerthana</creatorcontrib><description>Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinges on meticulous learning rate tuning, a crucial ANN hyperparameter. With the Adam optimizer, OptiANN-LR efficiently converges, and dropout layers curb overfitting, ensuring robust generalization. These enhancements promise early diabetes diagnosis and prevention. Rigorous evaluations employing k-fold cross-validation and diverse metrics affirm OptiANN-LR's reliability. Our work showcases advanced machine learning in healthcare, especially diabetes prediction, advancing data-driven approaches. This research heralds more accurate healthcare solutions, potentially benefiting millions at risk of diabetes and facilitating proactive interventions.</description><identifier>EISSN: 2688-0288</identifier><identifier>EISBN: 9798350348460</identifier><identifier>DOI: 10.1109/SCEECS61402.2024.10481943</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Diabetes ; diabetes prediction ; early diagnosis ; hyperparameter tuning ; Learning (artificial intelligence) ; machine learning in healthcare ; Medical services ; Parallel processing ; Software ; Training</subject><ispartof>2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 2024, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10481943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10481943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>P, Sujitha S</creatorcontrib><creatorcontrib>Anita, C. S.</creatorcontrib><creatorcontrib>Sudharson, K.</creatorcontrib><creatorcontrib>Rose, S. Remya</creatorcontrib><creatorcontrib>S, Sharmila</creatorcontrib><creatorcontrib>V, Keerthana</creatorcontrib><title>OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks</title><title>2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)</title><addtitle>SCEECS</addtitle><description>Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinges on meticulous learning rate tuning, a crucial ANN hyperparameter. With the Adam optimizer, OptiANN-LR efficiently converges, and dropout layers curb overfitting, ensuring robust generalization. These enhancements promise early diabetes diagnosis and prevention. Rigorous evaluations employing k-fold cross-validation and diverse metrics affirm OptiANN-LR's reliability. Our work showcases advanced machine learning in healthcare, especially diabetes prediction, advancing data-driven approaches. This research heralds more accurate healthcare solutions, potentially benefiting millions at risk of diabetes and facilitating proactive interventions.</description><subject>Artificial neural networks</subject><subject>Diabetes</subject><subject>diabetes prediction</subject><subject>early diagnosis</subject><subject>hyperparameter tuning</subject><subject>Learning (artificial intelligence)</subject><subject>machine learning in healthcare</subject><subject>Medical services</subject><subject>Parallel processing</subject><subject>Software</subject><subject>Training</subject><issn>2688-0288</issn><isbn>9798350348460</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1OAjEcxKuJiQR5Aw_1ARb7td3W22ZFMdmAATyTtvsHqrCQbjcEDz67ix-nmWQyv2QGoTtKhpQSfT8vRqNiLqkgbMgIE0NKhKJa8As00JlWPCVcKCHJJeoxqVRCmFLXaNA074QQzgjPiO6hr-kh-nwyScrZA87b9Q7q6Os1fvTGQoQGvwaovIt-X-PcuTYYd8JxE_bteoPHpwMEXIIJ9bkzMxHwov3xvsZn8s5_QoXzEP3KO2-2eAId4izxuA8fzQ26WpltA4M_7aO3p9GiGCfl9PmlyMvEU6pjYg23zLLMap4qJh1TkmvQsmKp5t3SlAoqVWq7hEvqjKUrJyjLhOTMaXC8j25_uR4Alofgdyaclv-X8W9LXWFL</recordid><startdate>20240224</startdate><enddate>20240224</enddate><creator>P, Sujitha S</creator><creator>Anita, C. S.</creator><creator>Sudharson, K.</creator><creator>Rose, S. Remya</creator><creator>S, Sharmila</creator><creator>V, Keerthana</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240224</creationdate><title>OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks</title><author>P, Sujitha S ; Anita, C. S. ; Sudharson, K. ; Rose, S. Remya ; S, Sharmila ; V, Keerthana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-ba3b2b27b935826c28639e96d25933505141685b6c2361cab1fc41274632c9ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Diabetes</topic><topic>diabetes prediction</topic><topic>early diagnosis</topic><topic>hyperparameter tuning</topic><topic>Learning (artificial intelligence)</topic><topic>machine learning in healthcare</topic><topic>Medical services</topic><topic>Parallel processing</topic><topic>Software</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>P, Sujitha S</creatorcontrib><creatorcontrib>Anita, C. S.</creatorcontrib><creatorcontrib>Sudharson, K.</creatorcontrib><creatorcontrib>Rose, S. Remya</creatorcontrib><creatorcontrib>S, Sharmila</creatorcontrib><creatorcontrib>V, Keerthana</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>P, Sujitha S</au><au>Anita, C. S.</au><au>Sudharson, K.</au><au>Rose, S. Remya</au><au>S, Sharmila</au><au>V, Keerthana</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks</atitle><btitle>2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)</btitle><stitle>SCEECS</stitle><date>2024-02-24</date><risdate>2024</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2688-0288</eissn><eisbn>9798350348460</eisbn><abstract>Diabetes, a pervasive chronic condition, presents global health challenges. We propose a novel approach to address this, optimizing Artificial Neural Networks (ANNs) through hyperparameter tuning. Our model, OptiANN-LR, achieves an exceptional 95.57% accuracy, surpassing ABP-SCGNN 93%. Success hinges on meticulous learning rate tuning, a crucial ANN hyperparameter. With the Adam optimizer, OptiANN-LR efficiently converges, and dropout layers curb overfitting, ensuring robust generalization. These enhancements promise early diabetes diagnosis and prevention. Rigorous evaluations employing k-fold cross-validation and diverse metrics affirm OptiANN-LR's reliability. Our work showcases advanced machine learning in healthcare, especially diabetes prediction, advancing data-driven approaches. This research heralds more accurate healthcare solutions, potentially benefiting millions at risk of diabetes and facilitating proactive interventions.</abstract><pub>IEEE</pub><doi>10.1109/SCEECS61402.2024.10481943</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2688-0288 |
ispartof | 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 2024, p.1-5 |
issn | 2688-0288 |
language | eng |
recordid | cdi_ieee_primary_10481943 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks Diabetes diabetes prediction early diagnosis hyperparameter tuning Learning (artificial intelligence) machine learning in healthcare Medical services Parallel processing Software Training |
title | OptiANN-LR: Augmenting Diabetes Prediction Accuracy through Hyper Learning Rate Tuning in Optimized Artificial Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=OptiANN-LR:%20Augmenting%20Diabetes%20Prediction%20Accuracy%20through%20Hyper%20Learning%20Rate%20Tuning%20in%20Optimized%20Artificial%20Neural%20Networks&rft.btitle=2024%20IEEE%20International%20Students'%20Conference%20on%20Electrical,%20Electronics%20and%20Computer%20Science%20(SCEECS)&rft.au=P,%20Sujitha%20S&rft.date=2024-02-24&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2688-0288&rft_id=info:doi/10.1109/SCEECS61402.2024.10481943&rft.eisbn=9798350348460&rft_dat=%3Cieee_CHZPO%3E10481943%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-ba3b2b27b935826c28639e96d25933505141685b6c2361cab1fc41274632c9ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10481943&rfr_iscdi=true |