Loading…

Detecting Content Segments from Online Sports Streaming Events: Challenges and Solutions

Developing a client-side segmentation algorithm for on-line sports streaming holds significant importance. For instance, in order to assess the video quality from an end-user perspective such as artifact detection, it is important to initially segment the content within the streaming playback. The c...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Zongyi, Feng, Yarong, Luo, Shunyan, Ling, Yuan, Dong, Shujing, Wang, Shuyi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6411
container_issue
container_start_page 6402
container_title
container_volume
creator Liu, Zongyi
Feng, Yarong
Luo, Shunyan
Ling, Yuan
Dong, Shujing
Wang, Shuyi
description Developing a client-side segmentation algorithm for on-line sports streaming holds significant importance. For instance, in order to assess the video quality from an end-user perspective such as artifact detection, it is important to initially segment the content within the streaming playback. The challenge lies in localizing the content due to the intricate scene changes between content and non-content sections in popular sports like football, tennis, baseball, and more. Client-side content detection can be implemented in two ways: intrusively, involving the interception of network traffic and parsing service provider data and logs, or non-intrusively, which entails capturing streamed videos from content providers and subjecting them to analysis using computer vision technologies. In this paper, we introduce a non-intrusive framework that leverages a combination of traditional machine learning algorithms and deep neural networks (DNN) to distinguish content sections from noncontent sections across various online sports streaming services. Our algorithm has demonstrated a remarkable level of accuracy and effectiveness in sports broadcasting events, effectively overcoming the complexities introduced by intricate non-content insertion methods during the games.
doi_str_mv 10.1109/WACV57701.2024.00629
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10483789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10483789</ieee_id><sourcerecordid>10483789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-f54edad2f894e8ec61fe1d68c623b37e8964945eccf8d753e96dd025cb0a61d03</originalsourceid><addsrcrecordid>eNotjMtKw0AUQEdBsNb-QRfzA4l3HpnMdVdifUChi_jalWnmJkaSSUlGwb-3RVcHDofD2FJAKgTgzduqeM3yHEQqQeoUwEg8YwvM0aoMlLAo4ZzNpNEyQWXFJbuapk8AhQLVjL3fUaQqtqHhxRAihchLavojJ16PQ8-3oWsD8fIwjEdVxpFcf6rX36fmlhcfrusoNDRxFzwvh-4rtkOYrtlF7bqJFv-cs5f79XPxmGy2D0_FapO0QmBM6kyTd17WFjVZqoyoSXhjKyPVXuVk0WjUGVVVbX2eKULjPcis2oMzwoOas-XftyWi3WFsezf-7ARoq3KL6hfKVVQG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting Content Segments from Online Sports Streaming Events: Challenges and Solutions</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Zongyi ; Feng, Yarong ; Luo, Shunyan ; Ling, Yuan ; Dong, Shujing ; Wang, Shuyi</creator><creatorcontrib>Liu, Zongyi ; Feng, Yarong ; Luo, Shunyan ; Ling, Yuan ; Dong, Shujing ; Wang, Shuyi</creatorcontrib><description>Developing a client-side segmentation algorithm for on-line sports streaming holds significant importance. For instance, in order to assess the video quality from an end-user perspective such as artifact detection, it is important to initially segment the content within the streaming playback. The challenge lies in localizing the content due to the intricate scene changes between content and non-content sections in popular sports like football, tennis, baseball, and more. Client-side content detection can be implemented in two ways: intrusively, involving the interception of network traffic and parsing service provider data and logs, or non-intrusively, which entails capturing streamed videos from content providers and subjecting them to analysis using computer vision technologies. In this paper, we introduce a non-intrusive framework that leverages a combination of traditional machine learning algorithms and deep neural networks (DNN) to distinguish content sections from noncontent sections across various online sports streaming services. Our algorithm has demonstrated a remarkable level of accuracy and effectiveness in sports broadcasting events, effectively overcoming the complexities introduced by intricate non-content insertion methods during the games.</description><identifier>EISSN: 2642-9381</identifier><identifier>EISBN: 9798350318920</identifier><identifier>DOI: 10.1109/WACV57701.2024.00629</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Applications ; Artificial neural networks ; Computer vision ; Games ; Machine learning algorithms ; Quality assessment ; Smartphones / end user devices ; Streaming media ; Telecommunication traffic ; Video recognition and understanding ; Vision + language and/or other modalities</subject><ispartof>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, p.6402-6411</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10483789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10483789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Zongyi</creatorcontrib><creatorcontrib>Feng, Yarong</creatorcontrib><creatorcontrib>Luo, Shunyan</creatorcontrib><creatorcontrib>Ling, Yuan</creatorcontrib><creatorcontrib>Dong, Shujing</creatorcontrib><creatorcontrib>Wang, Shuyi</creatorcontrib><title>Detecting Content Segments from Online Sports Streaming Events: Challenges and Solutions</title><title>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>Developing a client-side segmentation algorithm for on-line sports streaming holds significant importance. For instance, in order to assess the video quality from an end-user perspective such as artifact detection, it is important to initially segment the content within the streaming playback. The challenge lies in localizing the content due to the intricate scene changes between content and non-content sections in popular sports like football, tennis, baseball, and more. Client-side content detection can be implemented in two ways: intrusively, involving the interception of network traffic and parsing service provider data and logs, or non-intrusively, which entails capturing streamed videos from content providers and subjecting them to analysis using computer vision technologies. In this paper, we introduce a non-intrusive framework that leverages a combination of traditional machine learning algorithms and deep neural networks (DNN) to distinguish content sections from noncontent sections across various online sports streaming services. Our algorithm has demonstrated a remarkable level of accuracy and effectiveness in sports broadcasting events, effectively overcoming the complexities introduced by intricate non-content insertion methods during the games.</description><subject>Algorithms</subject><subject>Applications</subject><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Games</subject><subject>Machine learning algorithms</subject><subject>Quality assessment</subject><subject>Smartphones / end user devices</subject><subject>Streaming media</subject><subject>Telecommunication traffic</subject><subject>Video recognition and understanding</subject><subject>Vision + language and/or other modalities</subject><issn>2642-9381</issn><isbn>9798350318920</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtKw0AUQEdBsNb-QRfzA4l3HpnMdVdifUChi_jalWnmJkaSSUlGwb-3RVcHDofD2FJAKgTgzduqeM3yHEQqQeoUwEg8YwvM0aoMlLAo4ZzNpNEyQWXFJbuapk8AhQLVjL3fUaQqtqHhxRAihchLavojJ16PQ8-3oWsD8fIwjEdVxpFcf6rX36fmlhcfrusoNDRxFzwvh-4rtkOYrtlF7bqJFv-cs5f79XPxmGy2D0_FapO0QmBM6kyTd17WFjVZqoyoSXhjKyPVXuVk0WjUGVVVbX2eKULjPcis2oMzwoOas-XftyWi3WFsezf-7ARoq3KL6hfKVVQG</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Liu, Zongyi</creator><creator>Feng, Yarong</creator><creator>Luo, Shunyan</creator><creator>Ling, Yuan</creator><creator>Dong, Shujing</creator><creator>Wang, Shuyi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240103</creationdate><title>Detecting Content Segments from Online Sports Streaming Events: Challenges and Solutions</title><author>Liu, Zongyi ; Feng, Yarong ; Luo, Shunyan ; Ling, Yuan ; Dong, Shujing ; Wang, Shuyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-f54edad2f894e8ec61fe1d68c623b37e8964945eccf8d753e96dd025cb0a61d03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications</topic><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Games</topic><topic>Machine learning algorithms</topic><topic>Quality assessment</topic><topic>Smartphones / end user devices</topic><topic>Streaming media</topic><topic>Telecommunication traffic</topic><topic>Video recognition and understanding</topic><topic>Vision + language and/or other modalities</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zongyi</creatorcontrib><creatorcontrib>Feng, Yarong</creatorcontrib><creatorcontrib>Luo, Shunyan</creatorcontrib><creatorcontrib>Ling, Yuan</creatorcontrib><creatorcontrib>Dong, Shujing</creatorcontrib><creatorcontrib>Wang, Shuyi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zongyi</au><au>Feng, Yarong</au><au>Luo, Shunyan</au><au>Ling, Yuan</au><au>Dong, Shujing</au><au>Wang, Shuyi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting Content Segments from Online Sports Streaming Events: Challenges and Solutions</atitle><btitle>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2024-01-03</date><risdate>2024</risdate><spage>6402</spage><epage>6411</epage><pages>6402-6411</pages><eissn>2642-9381</eissn><eisbn>9798350318920</eisbn><coden>IEEPAD</coden><abstract>Developing a client-side segmentation algorithm for on-line sports streaming holds significant importance. For instance, in order to assess the video quality from an end-user perspective such as artifact detection, it is important to initially segment the content within the streaming playback. The challenge lies in localizing the content due to the intricate scene changes between content and non-content sections in popular sports like football, tennis, baseball, and more. Client-side content detection can be implemented in two ways: intrusively, involving the interception of network traffic and parsing service provider data and logs, or non-intrusively, which entails capturing streamed videos from content providers and subjecting them to analysis using computer vision technologies. In this paper, we introduce a non-intrusive framework that leverages a combination of traditional machine learning algorithms and deep neural networks (DNN) to distinguish content sections from noncontent sections across various online sports streaming services. Our algorithm has demonstrated a remarkable level of accuracy and effectiveness in sports broadcasting events, effectively overcoming the complexities introduced by intricate non-content insertion methods during the games.</abstract><pub>IEEE</pub><doi>10.1109/WACV57701.2024.00629</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-9381
ispartof 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, p.6402-6411
issn 2642-9381
language eng
recordid cdi_ieee_primary_10483789
source IEEE Xplore All Conference Series
subjects Algorithms
Applications
Artificial neural networks
Computer vision
Games
Machine learning algorithms
Quality assessment
Smartphones / end user devices
Streaming media
Telecommunication traffic
Video recognition and understanding
Vision + language and/or other modalities
title Detecting Content Segments from Online Sports Streaming Events: Challenges and Solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20Content%20Segments%20from%20Online%20Sports%20Streaming%20Events:%20Challenges%20and%20Solutions&rft.btitle=2024%20IEEE/CVF%20Winter%20Conference%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Liu,%20Zongyi&rft.date=2024-01-03&rft.spage=6402&rft.epage=6411&rft.pages=6402-6411&rft.eissn=2642-9381&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WACV57701.2024.00629&rft.eisbn=9798350318920&rft_dat=%3Cieee_CHZPO%3E10483789%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-f54edad2f894e8ec61fe1d68c623b37e8964945eccf8d753e96dd025cb0a61d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10483789&rfr_iscdi=true