Loading…
Learning Intra-class Multimodal Distributions with Orthonormal Matrices
In this paper, we address the challenges of representing feature distributions which have multimodality within a class in deep neural networks. Existing online clustering methods employ sub-centroids to capture intra-class variations. However, conducting online clustering faces some limitations, i.e...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1868 |
container_issue | |
container_start_page | 1859 |
container_title | |
container_volume | |
creator | Goto, Jumpei Nakata, Yohei Abe, Kiyofumi Ishii, Yasunori Yamashita, Takayoshi |
description | In this paper, we address the challenges of representing feature distributions which have multimodality within a class in deep neural networks. Existing online clustering methods employ sub-centroids to capture intra-class variations. However, conducting online clustering faces some limitations, i.e., online clustering assigns only a single sub-centroid to a feature vector extracted from a backbone and ignores the relationship between the other sub-centroids and the feature vector, and updating sub-centroids in an online clustering manner incurs significant storage costs. To address these limitations, we propose a novel method utilizing orthonormal matrices instead of sub-centroids for relaxing discrete assignments into continuous assignments. We update the orthonormal matrices using a gradient-based method, which eliminates the need for online clustering or additional storage. Experimental results on the CIFAR and ImageNet datasets exhibit that the proposed method outperforms current online clustering techniques in classification accuracy, sub-category discovery, and transferability, providing an efficient solution to the challenges posed by complex recognition targets. |
doi_str_mv | 10.1109/WACV57701.2024.00188 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10484104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10484104</ieee_id><sourcerecordid>10484104</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-7939c051c9d0dd77a38a438471ca4cce6580d9cdb093f6166349a7fa24c16a693</originalsourceid><addsrcrecordid>eNotjMtOAjEUQKuJiYj8AYv5gcF7p522d0lQkWQIGx9LcukUqRlmTFti_HtJcHPO4iRHiCnCDBHo4WO-eK-NAZxVUKkZAFp7JSZkyMoaJFqq4FqMKq2qkqTFW3GX0heAJCQ5EsvGc-xD_1ms-hy5dB2nVKxPXQ7HoeWueAwpx7A75TD0qfgJ-VBsYj4M_RCP57zmc3U-3YubPXfJT_49Fm_PT6-Ll7LZLFeLeVMGRMqlIUkOanTUQtsaw9KyklYZdKyc87q20JJrd0Byr1FrqYjNnivlULMmORbTyzd477ffMRw5_m4RlFVnyD-fB009</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning Intra-class Multimodal Distributions with Orthonormal Matrices</title><source>IEEE Xplore All Conference Series</source><creator>Goto, Jumpei ; Nakata, Yohei ; Abe, Kiyofumi ; Ishii, Yasunori ; Yamashita, Takayoshi</creator><creatorcontrib>Goto, Jumpei ; Nakata, Yohei ; Abe, Kiyofumi ; Ishii, Yasunori ; Yamashita, Takayoshi</creatorcontrib><description>In this paper, we address the challenges of representing feature distributions which have multimodality within a class in deep neural networks. Existing online clustering methods employ sub-centroids to capture intra-class variations. However, conducting online clustering faces some limitations, i.e., online clustering assigns only a single sub-centroid to a feature vector extracted from a backbone and ignores the relationship between the other sub-centroids and the feature vector, and updating sub-centroids in an online clustering manner incurs significant storage costs. To address these limitations, we propose a novel method utilizing orthonormal matrices instead of sub-centroids for relaxing discrete assignments into continuous assignments. We update the orthonormal matrices using a gradient-based method, which eliminates the need for online clustering or additional storage. Experimental results on the CIFAR and ImageNet datasets exhibit that the proposed method outperforms current online clustering techniques in classification accuracy, sub-category discovery, and transferability, providing an efficient solution to the challenges posed by complex recognition targets.</description><identifier>EISSN: 2642-9381</identifier><identifier>EISBN: 9798350318920</identifier><identifier>DOI: 10.1109/WACV57701.2024.00188</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>accountable ; Algorithms ; and algorithms ; Clustering methods ; Computational modeling ; Computer vision ; Costs ; ethical computer vision ; Explainable ; fair ; formulations ; Image recognition ; Image recognition and understanding ; Lead acid batteries ; Machine learning architectures ; privacy-preserving ; Target recognition</subject><ispartof>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, p.1859-1868</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10484104$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10484104$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goto, Jumpei</creatorcontrib><creatorcontrib>Nakata, Yohei</creatorcontrib><creatorcontrib>Abe, Kiyofumi</creatorcontrib><creatorcontrib>Ishii, Yasunori</creatorcontrib><creatorcontrib>Yamashita, Takayoshi</creatorcontrib><title>Learning Intra-class Multimodal Distributions with Orthonormal Matrices</title><title>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>In this paper, we address the challenges of representing feature distributions which have multimodality within a class in deep neural networks. Existing online clustering methods employ sub-centroids to capture intra-class variations. However, conducting online clustering faces some limitations, i.e., online clustering assigns only a single sub-centroid to a feature vector extracted from a backbone and ignores the relationship between the other sub-centroids and the feature vector, and updating sub-centroids in an online clustering manner incurs significant storage costs. To address these limitations, we propose a novel method utilizing orthonormal matrices instead of sub-centroids for relaxing discrete assignments into continuous assignments. We update the orthonormal matrices using a gradient-based method, which eliminates the need for online clustering or additional storage. Experimental results on the CIFAR and ImageNet datasets exhibit that the proposed method outperforms current online clustering techniques in classification accuracy, sub-category discovery, and transferability, providing an efficient solution to the challenges posed by complex recognition targets.</description><subject>accountable</subject><subject>Algorithms</subject><subject>and algorithms</subject><subject>Clustering methods</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Costs</subject><subject>ethical computer vision</subject><subject>Explainable</subject><subject>fair</subject><subject>formulations</subject><subject>Image recognition</subject><subject>Image recognition and understanding</subject><subject>Lead acid batteries</subject><subject>Machine learning architectures</subject><subject>privacy-preserving</subject><subject>Target recognition</subject><issn>2642-9381</issn><isbn>9798350318920</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOAjEUQKuJiYj8AYv5gcF7p522d0lQkWQIGx9LcukUqRlmTFti_HtJcHPO4iRHiCnCDBHo4WO-eK-NAZxVUKkZAFp7JSZkyMoaJFqq4FqMKq2qkqTFW3GX0heAJCQ5EsvGc-xD_1ms-hy5dB2nVKxPXQ7HoeWueAwpx7A75TD0qfgJ-VBsYj4M_RCP57zmc3U-3YubPXfJT_49Fm_PT6-Ll7LZLFeLeVMGRMqlIUkOanTUQtsaw9KyklYZdKyc87q20JJrd0Byr1FrqYjNnivlULMmORbTyzd477ffMRw5_m4RlFVnyD-fB009</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Goto, Jumpei</creator><creator>Nakata, Yohei</creator><creator>Abe, Kiyofumi</creator><creator>Ishii, Yasunori</creator><creator>Yamashita, Takayoshi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240103</creationdate><title>Learning Intra-class Multimodal Distributions with Orthonormal Matrices</title><author>Goto, Jumpei ; Nakata, Yohei ; Abe, Kiyofumi ; Ishii, Yasunori ; Yamashita, Takayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-7939c051c9d0dd77a38a438471ca4cce6580d9cdb093f6166349a7fa24c16a693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accountable</topic><topic>Algorithms</topic><topic>and algorithms</topic><topic>Clustering methods</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Costs</topic><topic>ethical computer vision</topic><topic>Explainable</topic><topic>fair</topic><topic>formulations</topic><topic>Image recognition</topic><topic>Image recognition and understanding</topic><topic>Lead acid batteries</topic><topic>Machine learning architectures</topic><topic>privacy-preserving</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Goto, Jumpei</creatorcontrib><creatorcontrib>Nakata, Yohei</creatorcontrib><creatorcontrib>Abe, Kiyofumi</creatorcontrib><creatorcontrib>Ishii, Yasunori</creatorcontrib><creatorcontrib>Yamashita, Takayoshi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goto, Jumpei</au><au>Nakata, Yohei</au><au>Abe, Kiyofumi</au><au>Ishii, Yasunori</au><au>Yamashita, Takayoshi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning Intra-class Multimodal Distributions with Orthonormal Matrices</atitle><btitle>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2024-01-03</date><risdate>2024</risdate><spage>1859</spage><epage>1868</epage><pages>1859-1868</pages><eissn>2642-9381</eissn><eisbn>9798350318920</eisbn><coden>IEEPAD</coden><abstract>In this paper, we address the challenges of representing feature distributions which have multimodality within a class in deep neural networks. Existing online clustering methods employ sub-centroids to capture intra-class variations. However, conducting online clustering faces some limitations, i.e., online clustering assigns only a single sub-centroid to a feature vector extracted from a backbone and ignores the relationship between the other sub-centroids and the feature vector, and updating sub-centroids in an online clustering manner incurs significant storage costs. To address these limitations, we propose a novel method utilizing orthonormal matrices instead of sub-centroids for relaxing discrete assignments into continuous assignments. We update the orthonormal matrices using a gradient-based method, which eliminates the need for online clustering or additional storage. Experimental results on the CIFAR and ImageNet datasets exhibit that the proposed method outperforms current online clustering techniques in classification accuracy, sub-category discovery, and transferability, providing an efficient solution to the challenges posed by complex recognition targets.</abstract><pub>IEEE</pub><doi>10.1109/WACV57701.2024.00188</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-9381 |
ispartof | 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, p.1859-1868 |
issn | 2642-9381 |
language | eng |
recordid | cdi_ieee_primary_10484104 |
source | IEEE Xplore All Conference Series |
subjects | accountable Algorithms and algorithms Clustering methods Computational modeling Computer vision Costs ethical computer vision Explainable fair formulations Image recognition Image recognition and understanding Lead acid batteries Machine learning architectures privacy-preserving Target recognition |
title | Learning Intra-class Multimodal Distributions with Orthonormal Matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20Intra-class%20Multimodal%20Distributions%20with%20Orthonormal%20Matrices&rft.btitle=2024%20IEEE/CVF%20Winter%20Conference%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Goto,%20Jumpei&rft.date=2024-01-03&rft.spage=1859&rft.epage=1868&rft.pages=1859-1868&rft.eissn=2642-9381&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WACV57701.2024.00188&rft.eisbn=9798350318920&rft_dat=%3Cieee_CHZPO%3E10484104%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-7939c051c9d0dd77a38a438471ca4cce6580d9cdb093f6166349a7fa24c16a693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10484104&rfr_iscdi=true |