Loading…
IDD-AW: A Benchmark for Safe and Robust Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather
Large-scale deployment of fully autonomous vehicles requires a very high degree of robustness to unstructured traffic, weather conditions, and should prevent unsafe mispredictions. While there are several datasets and benchmarks focusing on segmentation for drive scenes, they are not specifically fo...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4611 |
container_issue | |
container_start_page | 4602 |
container_title | |
container_volume | |
creator | Shaik, Furqan Ahmed Reddy Malreddy, Abhishek Billa, Nikhil Reddy Chaudhary, Kunal Manchanda, Sunny Varma, Girish |
description | Large-scale deployment of fully autonomous vehicles requires a very high degree of robustness to unstructured traffic, weather conditions, and should prevent unsafe mispredictions. While there are several datasets and benchmarks focusing on segmentation for drive scenes, they are not specifically focused on safety and robustness issues. We introduce the IDD-AW dataset, which provides 5000 pairs of high-quality images with pixel-level annotations, captured under rain, fog, low light, and snow in unstructured driving conditions. As compared to other adverse weather datasets, we provide i.) more annotated images, ii.) paired Near-Infrared (NIR) image for each frame, iii.) larger label set with a 4-level label hierarchy to capture unstructured traffic conditions. We benchmark state-of-the-art models for semantic segmentation in IDD-AW. We also propose a new metric called "Safe mean Intersection over Union (Safe mIoU)" for hierarchical datasets which penalizes dangerous mispredictions that are not captured in the traditional definition of mean Intersection over Union (mIoU). The results show that IDD-AW is one of the most challenging datasets to date for these tasks. The dataset and code will be available here: http://iddaw.github.io. |
doi_str_mv | 10.1109/WACV57701.2024.00455 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10484270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10484270</ieee_id><sourcerecordid>10484270</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-2acac1ef97b1a0db01423e6577a9093582b1f39e3f055df299a2d4b4c8624a7d3</originalsourceid><addsrcrecordid>eNotj81OAjEYAKuJiYi8AYe-wOLXP3brbQVREhITATmSbvtVqtIl7ULi20vU05xmkiFkyGDEGOi7TT15U2UJbMSByxGAVOqCDHSpK6FAsEpzuCQ9Ppa80KJi1-Qm5w8AoZkWPXKYT6dFvbmnNX3AaHd7kz6pbxNdGo_UREdf2-aYO7rE9z3GznShjbT1dJrCCenSYsRMQ6TrmLt0tN0xoaOrZLwP9tev3QlTRrpB0-0w3ZIrb74yDv7ZJ-vZ42ryXCxenuaTelEExnRXcGONZeh12TADrgEmucDx-dRo0EJVvGFeaBQelHKea224k4201ZhLUzrRJ8O_bkDE7SGF89n3loGsJC9B_ABDhloY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>IDD-AW: A Benchmark for Safe and Robust Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather</title><source>IEEE Xplore All Conference Series</source><creator>Shaik, Furqan Ahmed ; Reddy Malreddy, Abhishek ; Billa, Nikhil Reddy ; Chaudhary, Kunal ; Manchanda, Sunny ; Varma, Girish</creator><creatorcontrib>Shaik, Furqan Ahmed ; Reddy Malreddy, Abhishek ; Billa, Nikhil Reddy ; Chaudhary, Kunal ; Manchanda, Sunny ; Varma, Girish</creatorcontrib><description>Large-scale deployment of fully autonomous vehicles requires a very high degree of robustness to unstructured traffic, weather conditions, and should prevent unsafe mispredictions. While there are several datasets and benchmarks focusing on segmentation for drive scenes, they are not specifically focused on safety and robustness issues. We introduce the IDD-AW dataset, which provides 5000 pairs of high-quality images with pixel-level annotations, captured under rain, fog, low light, and snow in unstructured driving conditions. As compared to other adverse weather datasets, we provide i.) more annotated images, ii.) paired Near-Infrared (NIR) image for each frame, iii.) larger label set with a 4-level label hierarchy to capture unstructured traffic conditions. We benchmark state-of-the-art models for semantic segmentation in IDD-AW. We also propose a new metric called "Safe mean Intersection over Union (Safe mIoU)" for hierarchical datasets which penalizes dangerous mispredictions that are not captured in the traditional definition of mean Intersection over Union (mIoU). The results show that IDD-AW is one of the most challenging datasets to date for these tasks. The dataset and code will be available here: http://iddaw.github.io.</description><identifier>EISSN: 2642-9381</identifier><identifier>EISBN: 9798350318920</identifier><identifier>DOI: 10.1109/WACV57701.2024.00455</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Applications ; Autonomous Driving ; Benchmark testing ; Datasets and evaluations ; Measurement ; Rain ; Robustness ; Semantic segmentation ; Semantics ; Snow</subject><ispartof>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, p.4602-4611</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10484270$$EHTML$$P50$$Gieee$$H</linktohtml><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10484270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shaik, Furqan Ahmed</creatorcontrib><creatorcontrib>Reddy Malreddy, Abhishek</creatorcontrib><creatorcontrib>Billa, Nikhil Reddy</creatorcontrib><creatorcontrib>Chaudhary, Kunal</creatorcontrib><creatorcontrib>Manchanda, Sunny</creatorcontrib><creatorcontrib>Varma, Girish</creatorcontrib><title>IDD-AW: A Benchmark for Safe and Robust Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather</title><title>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>Large-scale deployment of fully autonomous vehicles requires a very high degree of robustness to unstructured traffic, weather conditions, and should prevent unsafe mispredictions. While there are several datasets and benchmarks focusing on segmentation for drive scenes, they are not specifically focused on safety and robustness issues. We introduce the IDD-AW dataset, which provides 5000 pairs of high-quality images with pixel-level annotations, captured under rain, fog, low light, and snow in unstructured driving conditions. As compared to other adverse weather datasets, we provide i.) more annotated images, ii.) paired Near-Infrared (NIR) image for each frame, iii.) larger label set with a 4-level label hierarchy to capture unstructured traffic conditions. We benchmark state-of-the-art models for semantic segmentation in IDD-AW. We also propose a new metric called "Safe mean Intersection over Union (Safe mIoU)" for hierarchical datasets which penalizes dangerous mispredictions that are not captured in the traditional definition of mean Intersection over Union (mIoU). The results show that IDD-AW is one of the most challenging datasets to date for these tasks. The dataset and code will be available here: http://iddaw.github.io.</description><subject>Algorithms</subject><subject>Applications</subject><subject>Autonomous Driving</subject><subject>Benchmark testing</subject><subject>Datasets and evaluations</subject><subject>Measurement</subject><subject>Rain</subject><subject>Robustness</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Snow</subject><issn>2642-9381</issn><isbn>9798350318920</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81OAjEYAKuJiYi8AYe-wOLXP3brbQVREhITATmSbvtVqtIl7ULi20vU05xmkiFkyGDEGOi7TT15U2UJbMSByxGAVOqCDHSpK6FAsEpzuCQ9Ppa80KJi1-Qm5w8AoZkWPXKYT6dFvbmnNX3AaHd7kz6pbxNdGo_UREdf2-aYO7rE9z3GznShjbT1dJrCCenSYsRMQ6TrmLt0tN0xoaOrZLwP9tev3QlTRrpB0-0w3ZIrb74yDv7ZJ-vZ42ryXCxenuaTelEExnRXcGONZeh12TADrgEmucDx-dRo0EJVvGFeaBQelHKea224k4201ZhLUzrRJ8O_bkDE7SGF89n3loGsJC9B_ABDhloY</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Shaik, Furqan Ahmed</creator><creator>Reddy Malreddy, Abhishek</creator><creator>Billa, Nikhil Reddy</creator><creator>Chaudhary, Kunal</creator><creator>Manchanda, Sunny</creator><creator>Varma, Girish</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240103</creationdate><title>IDD-AW: A Benchmark for Safe and Robust Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather</title><author>Shaik, Furqan Ahmed ; Reddy Malreddy, Abhishek ; Billa, Nikhil Reddy ; Chaudhary, Kunal ; Manchanda, Sunny ; Varma, Girish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-2acac1ef97b1a0db01423e6577a9093582b1f39e3f055df299a2d4b4c8624a7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications</topic><topic>Autonomous Driving</topic><topic>Benchmark testing</topic><topic>Datasets and evaluations</topic><topic>Measurement</topic><topic>Rain</topic><topic>Robustness</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Snow</topic><toplevel>online_resources</toplevel><creatorcontrib>Shaik, Furqan Ahmed</creatorcontrib><creatorcontrib>Reddy Malreddy, Abhishek</creatorcontrib><creatorcontrib>Billa, Nikhil Reddy</creatorcontrib><creatorcontrib>Chaudhary, Kunal</creatorcontrib><creatorcontrib>Manchanda, Sunny</creatorcontrib><creatorcontrib>Varma, Girish</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Xplore POP ALL</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shaik, Furqan Ahmed</au><au>Reddy Malreddy, Abhishek</au><au>Billa, Nikhil Reddy</au><au>Chaudhary, Kunal</au><au>Manchanda, Sunny</au><au>Varma, Girish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>IDD-AW: A Benchmark for Safe and Robust Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather</atitle><btitle>2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2024-01-03</date><risdate>2024</risdate><spage>4602</spage><epage>4611</epage><pages>4602-4611</pages><eissn>2642-9381</eissn><eisbn>9798350318920</eisbn><coden>IEEPAD</coden><abstract>Large-scale deployment of fully autonomous vehicles requires a very high degree of robustness to unstructured traffic, weather conditions, and should prevent unsafe mispredictions. While there are several datasets and benchmarks focusing on segmentation for drive scenes, they are not specifically focused on safety and robustness issues. We introduce the IDD-AW dataset, which provides 5000 pairs of high-quality images with pixel-level annotations, captured under rain, fog, low light, and snow in unstructured driving conditions. As compared to other adverse weather datasets, we provide i.) more annotated images, ii.) paired Near-Infrared (NIR) image for each frame, iii.) larger label set with a 4-level label hierarchy to capture unstructured traffic conditions. We benchmark state-of-the-art models for semantic segmentation in IDD-AW. We also propose a new metric called "Safe mean Intersection over Union (Safe mIoU)" for hierarchical datasets which penalizes dangerous mispredictions that are not captured in the traditional definition of mean Intersection over Union (mIoU). The results show that IDD-AW is one of the most challenging datasets to date for these tasks. The dataset and code will be available here: http://iddaw.github.io.</abstract><pub>IEEE</pub><doi>10.1109/WACV57701.2024.00455</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-9381 |
ispartof | 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, p.4602-4611 |
issn | 2642-9381 |
language | eng |
recordid | cdi_ieee_primary_10484270 |
source | IEEE Xplore All Conference Series |
subjects | Algorithms Applications Autonomous Driving Benchmark testing Datasets and evaluations Measurement Rain Robustness Semantic segmentation Semantics Snow |
title | IDD-AW: A Benchmark for Safe and Robust Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T10%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=IDD-AW:%20A%20Benchmark%20for%20Safe%20and%20Robust%20Segmentation%20of%20Drive%20Scenes%20in%20Unstructured%20Traffic%20and%20Adverse%20Weather&rft.btitle=2024%20IEEE/CVF%20Winter%20Conference%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Shaik,%20Furqan%20Ahmed&rft.date=2024-01-03&rft.spage=4602&rft.epage=4611&rft.pages=4602-4611&rft.eissn=2642-9381&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WACV57701.2024.00455&rft.eisbn=9798350318920&rft_dat=%3Cieee_CHZPO%3E10484270%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-2acac1ef97b1a0db01423e6577a9093582b1f39e3f055df299a2d4b4c8624a7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10484270&rfr_iscdi=true |