Loading…
Cultural-Aware AI Model for Emotion Recognition
Emotion AI is a research domain that aims to understand human emotions from visual or textual data. However, existing methods often ignore the influence of cultural diversity on emotional interpretation. In this paper, we propose a multimodal deep learning model that integrates cultural awareness in...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Baradaran, Mehrdad Zohari, Payam Mahyar, Abtin Motamednia, Hossein Rahmati, Dara Gorgin, Saeid |
description | Emotion AI is a research domain that aims to understand human emotions from visual or textual data. However, existing methods often ignore the influence of cultural diversity on emotional interpretation. In this paper, we propose a multimodal deep learning model that integrates cultural awareness into emotion recognition. Our model uses images as the primary data source and comments from individuals across different regions as the secondary data source. Our results show that our model achieves robust performance across various scenarios. Our contribution is to introduce a novel fusion approach that bridges cultural gaps and fosters a more nuanced understanding of emotions. Due to the best of our knowledge, few works are using this approach, for Emotion AI, combining different types of data sources and models. We evaluate our model on the ArtELingo dataset, which contains image-comment pairs with Chinese, Arabic, and English annotations. The experimental results in the evaluation phase demonstrate an impressive 80% recognition accuracy for the model that merges image-text features. |
doi_str_mv | 10.1109/MVIP62238.2024.10491176 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10491176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10491176</ieee_id><sourcerecordid>10491176</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-e93e3ed9092dfc5c4fbd10dfaccb1b96ca2847756bcacca104b904e7f9752bc93</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhFdBsNS8gWBeIOnZn-zuuQyhaqBFKdXbsrs5K5G0kSRFfHsjKgzM8F0MM4zdccg5B1xtX-tnLYS0uQChcg4KOTf6giVo0MoCZilUl2whuNaZNlZds2Qc3wFAcmtR2wVbVeduOg-uy8pPN1Ba1um2b6hLYz-k62M_tf0p3VHo307tT75hV9F1IyV_vmQv9-t99Zhtnh7qqtxkrQA1ZYSSJDUIKJoYiqCibzg00YXguUcdnLDKmEL7MCM3b_cIikxEUwgfUC7Z7W9vS0SHj6E9uuHr8P9RfgOAqEYB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cultural-Aware AI Model for Emotion Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Baradaran, Mehrdad ; Zohari, Payam ; Mahyar, Abtin ; Motamednia, Hossein ; Rahmati, Dara ; Gorgin, Saeid</creator><creatorcontrib>Baradaran, Mehrdad ; Zohari, Payam ; Mahyar, Abtin ; Motamednia, Hossein ; Rahmati, Dara ; Gorgin, Saeid</creatorcontrib><description>Emotion AI is a research domain that aims to understand human emotions from visual or textual data. However, existing methods often ignore the influence of cultural diversity on emotional interpretation. In this paper, we propose a multimodal deep learning model that integrates cultural awareness into emotion recognition. Our model uses images as the primary data source and comments from individuals across different regions as the secondary data source. Our results show that our model achieves robust performance across various scenarios. Our contribution is to introduce a novel fusion approach that bridges cultural gaps and fosters a more nuanced understanding of emotions. Due to the best of our knowledge, few works are using this approach, for Emotion AI, combining different types of data sources and models. We evaluate our model on the ArtELingo dataset, which contains image-comment pairs with Chinese, Arabic, and English annotations. The experimental results in the evaluation phase demonstrate an impressive 80% recognition accuracy for the model that merges image-text features.</description><identifier>EISSN: 2166-6784</identifier><identifier>EISBN: 9798350350494</identifier><identifier>DOI: 10.1109/MVIP62238.2024.10491176</identifier><language>eng</language><publisher>IEEE</publisher><subject>Annotations ; Deep learning ; DeepFeature Extraction ; Emotion recognition ; Image recognition ; Image Representation ; Soft sensors ; Speech recognition ; Text Representation ; Visualization</subject><ispartof>2024 13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10491176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10491176$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baradaran, Mehrdad</creatorcontrib><creatorcontrib>Zohari, Payam</creatorcontrib><creatorcontrib>Mahyar, Abtin</creatorcontrib><creatorcontrib>Motamednia, Hossein</creatorcontrib><creatorcontrib>Rahmati, Dara</creatorcontrib><creatorcontrib>Gorgin, Saeid</creatorcontrib><title>Cultural-Aware AI Model for Emotion Recognition</title><title>2024 13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP)</title><addtitle>MVIP</addtitle><description>Emotion AI is a research domain that aims to understand human emotions from visual or textual data. However, existing methods often ignore the influence of cultural diversity on emotional interpretation. In this paper, we propose a multimodal deep learning model that integrates cultural awareness into emotion recognition. Our model uses images as the primary data source and comments from individuals across different regions as the secondary data source. Our results show that our model achieves robust performance across various scenarios. Our contribution is to introduce a novel fusion approach that bridges cultural gaps and fosters a more nuanced understanding of emotions. Due to the best of our knowledge, few works are using this approach, for Emotion AI, combining different types of data sources and models. We evaluate our model on the ArtELingo dataset, which contains image-comment pairs with Chinese, Arabic, and English annotations. The experimental results in the evaluation phase demonstrate an impressive 80% recognition accuracy for the model that merges image-text features.</description><subject>Annotations</subject><subject>Deep learning</subject><subject>DeepFeature Extraction</subject><subject>Emotion recognition</subject><subject>Image recognition</subject><subject>Image Representation</subject><subject>Soft sensors</subject><subject>Speech recognition</subject><subject>Text Representation</subject><subject>Visualization</subject><issn>2166-6784</issn><isbn>9798350350494</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j91Kw0AUhFdBsNS8gWBeIOnZn-zuuQyhaqBFKdXbsrs5K5G0kSRFfHsjKgzM8F0MM4zdccg5B1xtX-tnLYS0uQChcg4KOTf6giVo0MoCZilUl2whuNaZNlZds2Qc3wFAcmtR2wVbVeduOg-uy8pPN1Ba1um2b6hLYz-k62M_tf0p3VHo307tT75hV9F1IyV_vmQv9-t99Zhtnh7qqtxkrQA1ZYSSJDUIKJoYiqCibzg00YXguUcdnLDKmEL7MCM3b_cIikxEUwgfUC7Z7W9vS0SHj6E9uuHr8P9RfgOAqEYB</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Baradaran, Mehrdad</creator><creator>Zohari, Payam</creator><creator>Mahyar, Abtin</creator><creator>Motamednia, Hossein</creator><creator>Rahmati, Dara</creator><creator>Gorgin, Saeid</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240306</creationdate><title>Cultural-Aware AI Model for Emotion Recognition</title><author>Baradaran, Mehrdad ; Zohari, Payam ; Mahyar, Abtin ; Motamednia, Hossein ; Rahmati, Dara ; Gorgin, Saeid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-e93e3ed9092dfc5c4fbd10dfaccb1b96ca2847756bcacca104b904e7f9752bc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Deep learning</topic><topic>DeepFeature Extraction</topic><topic>Emotion recognition</topic><topic>Image recognition</topic><topic>Image Representation</topic><topic>Soft sensors</topic><topic>Speech recognition</topic><topic>Text Representation</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Baradaran, Mehrdad</creatorcontrib><creatorcontrib>Zohari, Payam</creatorcontrib><creatorcontrib>Mahyar, Abtin</creatorcontrib><creatorcontrib>Motamednia, Hossein</creatorcontrib><creatorcontrib>Rahmati, Dara</creatorcontrib><creatorcontrib>Gorgin, Saeid</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baradaran, Mehrdad</au><au>Zohari, Payam</au><au>Mahyar, Abtin</au><au>Motamednia, Hossein</au><au>Rahmati, Dara</au><au>Gorgin, Saeid</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cultural-Aware AI Model for Emotion Recognition</atitle><btitle>2024 13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP)</btitle><stitle>MVIP</stitle><date>2024-03-06</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2166-6784</eissn><eisbn>9798350350494</eisbn><abstract>Emotion AI is a research domain that aims to understand human emotions from visual or textual data. However, existing methods often ignore the influence of cultural diversity on emotional interpretation. In this paper, we propose a multimodal deep learning model that integrates cultural awareness into emotion recognition. Our model uses images as the primary data source and comments from individuals across different regions as the secondary data source. Our results show that our model achieves robust performance across various scenarios. Our contribution is to introduce a novel fusion approach that bridges cultural gaps and fosters a more nuanced understanding of emotions. Due to the best of our knowledge, few works are using this approach, for Emotion AI, combining different types of data sources and models. We evaluate our model on the ArtELingo dataset, which contains image-comment pairs with Chinese, Arabic, and English annotations. The experimental results in the evaluation phase demonstrate an impressive 80% recognition accuracy for the model that merges image-text features.</abstract><pub>IEEE</pub><doi>10.1109/MVIP62238.2024.10491176</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2166-6784 |
ispartof | 2024 13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP), 2024, p.1-6 |
issn | 2166-6784 |
language | eng |
recordid | cdi_ieee_primary_10491176 |
source | IEEE Xplore All Conference Series |
subjects | Annotations Deep learning DeepFeature Extraction Emotion recognition Image recognition Image Representation Soft sensors Speech recognition Text Representation Visualization |
title | Cultural-Aware AI Model for Emotion Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cultural-Aware%20AI%20Model%20for%20Emotion%20Recognition&rft.btitle=2024%2013th%20Iranian/3rd%20International%20Machine%20Vision%20and%20Image%20Processing%20Conference%20(MVIP)&rft.au=Baradaran,%20Mehrdad&rft.date=2024-03-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2166-6784&rft_id=info:doi/10.1109/MVIP62238.2024.10491176&rft.eisbn=9798350350494&rft_dat=%3Cieee_CHZPO%3E10491176%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-e93e3ed9092dfc5c4fbd10dfaccb1b96ca2847756bcacca104b904e7f9752bc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10491176&rfr_iscdi=true |