Loading…

A Review of Federated Learning Methods in Heterogeneous Scenarios

Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics 2024, Vol.70 (3), p.5983-5999
Main Authors: Pei, Jiaming, Liu, Wenxuan, Li, Jinhai, Wang, Lukun, Liu, Chao
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423
cites
container_end_page 5999
container_issue 3
container_start_page 5983
container_title IEEE transactions on consumer electronics
container_volume 70
creator Pei, Jiaming
Liu, Wenxuan
Li, Jinhai
Wang, Lukun
Liu, Chao
description Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various factors that influence the training efficiency and accuracy of the federated learning models. There are many classic references focusing on federated communications, federated robustness and federated fairness, conversely, few of them clarify and summary systematically the influence of heterogeneity on the effect of federated learning. Therefore, we provide an overview of three heterogeneous challenges faced by federated learning in practical applications: device heterogeneity, data heterogeneity and model heterogeneity, and analyze their influence on federated learning. This is especially crucial in consumer electronics, where heterogeneity directly influence the performance and user experience of AI-driven features. And then, we highlight current solutions, ideas and challenges to compare different strategies for facing heterogeneous problems and outline several directions of future work that are relevant to a wide range of research communities.
doi_str_mv 10.1109/TCE.2024.3385440
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10492865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10492865</ieee_id><sourcerecordid>3144174785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQQBdRsFbvHjwseE7c749jCa0VKoLW87JuJjVFs3U3Vfz3pqQHT8PAezPwELqmpKSU2Lt1NS8ZYaLk3EghyAmaUClNISjTp2hCiDUFJ4qfo4uct4RQIZmZoNkMP8N3Cz84NngBNSTfQ41X4FPXdhv8CP17rDNuO7yEHlLcQAdxn_FLgM6nNuZLdNb4jwxXxzlFr4v5uloWq6f7h2q2KgIjui-kpQq4srXWlMk3E2yjazbsktaGK8UV8xogWKV58IRZoY2xvAnaNMoIxqfodry7S_FrD7l327hP3fDScSoE1YMgB4qMVEgx5wSN26X206dfR4k7hHJDKHcI5Y6hBuVmVFoA-IcLy4yS_A9E42Ha</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144174785</pqid></control><display><type>article</type><title>A Review of Federated Learning Methods in Heterogeneous Scenarios</title><source>IEEE Xplore (Online service)</source><creator>Pei, Jiaming ; Liu, Wenxuan ; Li, Jinhai ; Wang, Lukun ; Liu, Chao</creator><creatorcontrib>Pei, Jiaming ; Liu, Wenxuan ; Li, Jinhai ; Wang, Lukun ; Liu, Chao</creatorcontrib><description>Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various factors that influence the training efficiency and accuracy of the federated learning models. There are many classic references focusing on federated communications, federated robustness and federated fairness, conversely, few of them clarify and summary systematically the influence of heterogeneity on the effect of federated learning. Therefore, we provide an overview of three heterogeneous challenges faced by federated learning in practical applications: device heterogeneity, data heterogeneity and model heterogeneity, and analyze their influence on federated learning. This is especially crucial in consumer electronics, where heterogeneity directly influence the performance and user experience of AI-driven features. And then, we highlight current solutions, ideas and challenges to compare different strategies for facing heterogeneous problems and outline several directions of future work that are relevant to a wide range of research communities.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3385440</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Consumer electronics ; data heterogeneity ; Data models ; device heterogeneity ; Electronics ; Federated learning ; Heterogeneity ; Mathematical models ; model heterogeneity ; non-IID data distribution ; Privacy ; Surveys ; Training ; User experience</subject><ispartof>IEEE transactions on consumer electronics, 2024, Vol.70 (3), p.5983-5999</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423</citedby><orcidid>0000-0001-7714-633X ; 0000-0003-2774-0511 ; 0000-0002-1032-520X ; 0000-0001-7363-1987 ; 0000-0001-9207-7424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10492865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pei, Jiaming</creatorcontrib><creatorcontrib>Liu, Wenxuan</creatorcontrib><creatorcontrib>Li, Jinhai</creatorcontrib><creatorcontrib>Wang, Lukun</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><title>A Review of Federated Learning Methods in Heterogeneous Scenarios</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various factors that influence the training efficiency and accuracy of the federated learning models. There are many classic references focusing on federated communications, federated robustness and federated fairness, conversely, few of them clarify and summary systematically the influence of heterogeneity on the effect of federated learning. Therefore, we provide an overview of three heterogeneous challenges faced by federated learning in practical applications: device heterogeneity, data heterogeneity and model heterogeneity, and analyze their influence on federated learning. This is especially crucial in consumer electronics, where heterogeneity directly influence the performance and user experience of AI-driven features. And then, we highlight current solutions, ideas and challenges to compare different strategies for facing heterogeneous problems and outline several directions of future work that are relevant to a wide range of research communities.</description><subject>Computational modeling</subject><subject>Consumer electronics</subject><subject>data heterogeneity</subject><subject>Data models</subject><subject>device heterogeneity</subject><subject>Electronics</subject><subject>Federated learning</subject><subject>Heterogeneity</subject><subject>Mathematical models</subject><subject>model heterogeneity</subject><subject>non-IID data distribution</subject><subject>Privacy</subject><subject>Surveys</subject><subject>Training</subject><subject>User experience</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQQBdRsFbvHjwseE7c749jCa0VKoLW87JuJjVFs3U3Vfz3pqQHT8PAezPwELqmpKSU2Lt1NS8ZYaLk3EghyAmaUClNISjTp2hCiDUFJ4qfo4uct4RQIZmZoNkMP8N3Cz84NngBNSTfQ41X4FPXdhv8CP17rDNuO7yEHlLcQAdxn_FLgM6nNuZLdNb4jwxXxzlFr4v5uloWq6f7h2q2KgIjui-kpQq4srXWlMk3E2yjazbsktaGK8UV8xogWKV58IRZoY2xvAnaNMoIxqfodry7S_FrD7l327hP3fDScSoE1YMgB4qMVEgx5wSN26X206dfR4k7hHJDKHcI5Y6hBuVmVFoA-IcLy4yS_A9E42Ha</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Pei, Jiaming</creator><creator>Liu, Wenxuan</creator><creator>Li, Jinhai</creator><creator>Wang, Lukun</creator><creator>Liu, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7714-633X</orcidid><orcidid>https://orcid.org/0000-0003-2774-0511</orcidid><orcidid>https://orcid.org/0000-0002-1032-520X</orcidid><orcidid>https://orcid.org/0000-0001-7363-1987</orcidid><orcidid>https://orcid.org/0000-0001-9207-7424</orcidid></search><sort><creationdate>2024</creationdate><title>A Review of Federated Learning Methods in Heterogeneous Scenarios</title><author>Pei, Jiaming ; Liu, Wenxuan ; Li, Jinhai ; Wang, Lukun ; Liu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Consumer electronics</topic><topic>data heterogeneity</topic><topic>Data models</topic><topic>device heterogeneity</topic><topic>Electronics</topic><topic>Federated learning</topic><topic>Heterogeneity</topic><topic>Mathematical models</topic><topic>model heterogeneity</topic><topic>non-IID data distribution</topic><topic>Privacy</topic><topic>Surveys</topic><topic>Training</topic><topic>User experience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Jiaming</creatorcontrib><creatorcontrib>Liu, Wenxuan</creatorcontrib><creatorcontrib>Li, Jinhai</creatorcontrib><creatorcontrib>Wang, Lukun</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Jiaming</au><au>Liu, Wenxuan</au><au>Li, Jinhai</au><au>Wang, Lukun</au><au>Liu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Federated Learning Methods in Heterogeneous Scenarios</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>5983</spage><epage>5999</epage><pages>5983-5999</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various factors that influence the training efficiency and accuracy of the federated learning models. There are many classic references focusing on federated communications, federated robustness and federated fairness, conversely, few of them clarify and summary systematically the influence of heterogeneity on the effect of federated learning. Therefore, we provide an overview of three heterogeneous challenges faced by federated learning in practical applications: device heterogeneity, data heterogeneity and model heterogeneity, and analyze their influence on federated learning. This is especially crucial in consumer electronics, where heterogeneity directly influence the performance and user experience of AI-driven features. And then, we highlight current solutions, ideas and challenges to compare different strategies for facing heterogeneous problems and outline several directions of future work that are relevant to a wide range of research communities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3385440</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7714-633X</orcidid><orcidid>https://orcid.org/0000-0003-2774-0511</orcidid><orcidid>https://orcid.org/0000-0002-1032-520X</orcidid><orcidid>https://orcid.org/0000-0001-7363-1987</orcidid><orcidid>https://orcid.org/0000-0001-9207-7424</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024, Vol.70 (3), p.5983-5999
issn 0098-3063
1558-4127
language eng
recordid cdi_ieee_primary_10492865
source IEEE Xplore (Online service)
subjects Computational modeling
Consumer electronics
data heterogeneity
Data models
device heterogeneity
Electronics
Federated learning
Heterogeneity
Mathematical models
model heterogeneity
non-IID data distribution
Privacy
Surveys
Training
User experience
title A Review of Federated Learning Methods in Heterogeneous Scenarios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Federated%20Learning%20Methods%20in%20Heterogeneous%20Scenarios&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Pei,%20Jiaming&rft.date=2024&rft.volume=70&rft.issue=3&rft.spage=5983&rft.epage=5999&rft.pages=5983-5999&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3385440&rft_dat=%3Cproquest_ieee_%3E3144174785%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144174785&rft_id=info:pmid/&rft_ieee_id=10492865&rfr_iscdi=true