Loading…
A Review of Federated Learning Methods in Heterogeneous Scenarios
Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various f...
Saved in:
Published in: | IEEE transactions on consumer electronics 2024, Vol.70 (3), p.5983-5999 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423 |
---|---|
cites | |
container_end_page | 5999 |
container_issue | 3 |
container_start_page | 5983 |
container_title | IEEE transactions on consumer electronics |
container_volume | 70 |
creator | Pei, Jiaming Liu, Wenxuan Li, Jinhai Wang, Lukun Liu, Chao |
description | Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various factors that influence the training efficiency and accuracy of the federated learning models. There are many classic references focusing on federated communications, federated robustness and federated fairness, conversely, few of them clarify and summary systematically the influence of heterogeneity on the effect of federated learning. Therefore, we provide an overview of three heterogeneous challenges faced by federated learning in practical applications: device heterogeneity, data heterogeneity and model heterogeneity, and analyze their influence on federated learning. This is especially crucial in consumer electronics, where heterogeneity directly influence the performance and user experience of AI-driven features. And then, we highlight current solutions, ideas and challenges to compare different strategies for facing heterogeneous problems and outline several directions of future work that are relevant to a wide range of research communities. |
doi_str_mv | 10.1109/TCE.2024.3385440 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10492865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10492865</ieee_id><sourcerecordid>3144174785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQQBdRsFbvHjwseE7c749jCa0VKoLW87JuJjVFs3U3Vfz3pqQHT8PAezPwELqmpKSU2Lt1NS8ZYaLk3EghyAmaUClNISjTp2hCiDUFJ4qfo4uct4RQIZmZoNkMP8N3Cz84NngBNSTfQ41X4FPXdhv8CP17rDNuO7yEHlLcQAdxn_FLgM6nNuZLdNb4jwxXxzlFr4v5uloWq6f7h2q2KgIjui-kpQq4srXWlMk3E2yjazbsktaGK8UV8xogWKV58IRZoY2xvAnaNMoIxqfodry7S_FrD7l327hP3fDScSoE1YMgB4qMVEgx5wSN26X206dfR4k7hHJDKHcI5Y6hBuVmVFoA-IcLy4yS_A9E42Ha</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144174785</pqid></control><display><type>article</type><title>A Review of Federated Learning Methods in Heterogeneous Scenarios</title><source>IEEE Xplore (Online service)</source><creator>Pei, Jiaming ; Liu, Wenxuan ; Li, Jinhai ; Wang, Lukun ; Liu, Chao</creator><creatorcontrib>Pei, Jiaming ; Liu, Wenxuan ; Li, Jinhai ; Wang, Lukun ; Liu, Chao</creatorcontrib><description>Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various factors that influence the training efficiency and accuracy of the federated learning models. There are many classic references focusing on federated communications, federated robustness and federated fairness, conversely, few of them clarify and summary systematically the influence of heterogeneity on the effect of federated learning. Therefore, we provide an overview of three heterogeneous challenges faced by federated learning in practical applications: device heterogeneity, data heterogeneity and model heterogeneity, and analyze their influence on federated learning. This is especially crucial in consumer electronics, where heterogeneity directly influence the performance and user experience of AI-driven features. And then, we highlight current solutions, ideas and challenges to compare different strategies for facing heterogeneous problems and outline several directions of future work that are relevant to a wide range of research communities.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3385440</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Consumer electronics ; data heterogeneity ; Data models ; device heterogeneity ; Electronics ; Federated learning ; Heterogeneity ; Mathematical models ; model heterogeneity ; non-IID data distribution ; Privacy ; Surveys ; Training ; User experience</subject><ispartof>IEEE transactions on consumer electronics, 2024, Vol.70 (3), p.5983-5999</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423</citedby><orcidid>0000-0001-7714-633X ; 0000-0003-2774-0511 ; 0000-0002-1032-520X ; 0000-0001-7363-1987 ; 0000-0001-9207-7424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10492865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pei, Jiaming</creatorcontrib><creatorcontrib>Liu, Wenxuan</creatorcontrib><creatorcontrib>Li, Jinhai</creatorcontrib><creatorcontrib>Wang, Lukun</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><title>A Review of Federated Learning Methods in Heterogeneous Scenarios</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various factors that influence the training efficiency and accuracy of the federated learning models. There are many classic references focusing on federated communications, federated robustness and federated fairness, conversely, few of them clarify and summary systematically the influence of heterogeneity on the effect of federated learning. Therefore, we provide an overview of three heterogeneous challenges faced by federated learning in practical applications: device heterogeneity, data heterogeneity and model heterogeneity, and analyze their influence on federated learning. This is especially crucial in consumer electronics, where heterogeneity directly influence the performance and user experience of AI-driven features. And then, we highlight current solutions, ideas and challenges to compare different strategies for facing heterogeneous problems and outline several directions of future work that are relevant to a wide range of research communities.</description><subject>Computational modeling</subject><subject>Consumer electronics</subject><subject>data heterogeneity</subject><subject>Data models</subject><subject>device heterogeneity</subject><subject>Electronics</subject><subject>Federated learning</subject><subject>Heterogeneity</subject><subject>Mathematical models</subject><subject>model heterogeneity</subject><subject>non-IID data distribution</subject><subject>Privacy</subject><subject>Surveys</subject><subject>Training</subject><subject>User experience</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQQBdRsFbvHjwseE7c749jCa0VKoLW87JuJjVFs3U3Vfz3pqQHT8PAezPwELqmpKSU2Lt1NS8ZYaLk3EghyAmaUClNISjTp2hCiDUFJ4qfo4uct4RQIZmZoNkMP8N3Cz84NngBNSTfQ41X4FPXdhv8CP17rDNuO7yEHlLcQAdxn_FLgM6nNuZLdNb4jwxXxzlFr4v5uloWq6f7h2q2KgIjui-kpQq4srXWlMk3E2yjazbsktaGK8UV8xogWKV58IRZoY2xvAnaNMoIxqfodry7S_FrD7l327hP3fDScSoE1YMgB4qMVEgx5wSN26X206dfR4k7hHJDKHcI5Y6hBuVmVFoA-IcLy4yS_A9E42Ha</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Pei, Jiaming</creator><creator>Liu, Wenxuan</creator><creator>Li, Jinhai</creator><creator>Wang, Lukun</creator><creator>Liu, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7714-633X</orcidid><orcidid>https://orcid.org/0000-0003-2774-0511</orcidid><orcidid>https://orcid.org/0000-0002-1032-520X</orcidid><orcidid>https://orcid.org/0000-0001-7363-1987</orcidid><orcidid>https://orcid.org/0000-0001-9207-7424</orcidid></search><sort><creationdate>2024</creationdate><title>A Review of Federated Learning Methods in Heterogeneous Scenarios</title><author>Pei, Jiaming ; Liu, Wenxuan ; Li, Jinhai ; Wang, Lukun ; Liu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Consumer electronics</topic><topic>data heterogeneity</topic><topic>Data models</topic><topic>device heterogeneity</topic><topic>Electronics</topic><topic>Federated learning</topic><topic>Heterogeneity</topic><topic>Mathematical models</topic><topic>model heterogeneity</topic><topic>non-IID data distribution</topic><topic>Privacy</topic><topic>Surveys</topic><topic>Training</topic><topic>User experience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Jiaming</creatorcontrib><creatorcontrib>Liu, Wenxuan</creatorcontrib><creatorcontrib>Li, Jinhai</creatorcontrib><creatorcontrib>Wang, Lukun</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Jiaming</au><au>Liu, Wenxuan</au><au>Li, Jinhai</au><au>Wang, Lukun</au><au>Liu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Federated Learning Methods in Heterogeneous Scenarios</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>5983</spage><epage>5999</epage><pages>5983-5999</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Federated learning emerges as a solution to the dilemma of data silos while safeguarding data privacy, particularly relevant in the consumer electronics sector where user data privacy is paramount. However, federated learning is generally employed in a heterogeneous scenario, consisting of various factors that influence the training efficiency and accuracy of the federated learning models. There are many classic references focusing on federated communications, federated robustness and federated fairness, conversely, few of them clarify and summary systematically the influence of heterogeneity on the effect of federated learning. Therefore, we provide an overview of three heterogeneous challenges faced by federated learning in practical applications: device heterogeneity, data heterogeneity and model heterogeneity, and analyze their influence on federated learning. This is especially crucial in consumer electronics, where heterogeneity directly influence the performance and user experience of AI-driven features. And then, we highlight current solutions, ideas and challenges to compare different strategies for facing heterogeneous problems and outline several directions of future work that are relevant to a wide range of research communities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3385440</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7714-633X</orcidid><orcidid>https://orcid.org/0000-0003-2774-0511</orcidid><orcidid>https://orcid.org/0000-0002-1032-520X</orcidid><orcidid>https://orcid.org/0000-0001-7363-1987</orcidid><orcidid>https://orcid.org/0000-0001-9207-7424</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024, Vol.70 (3), p.5983-5999 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_ieee_primary_10492865 |
source | IEEE Xplore (Online service) |
subjects | Computational modeling Consumer electronics data heterogeneity Data models device heterogeneity Electronics Federated learning Heterogeneity Mathematical models model heterogeneity non-IID data distribution Privacy Surveys Training User experience |
title | A Review of Federated Learning Methods in Heterogeneous Scenarios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Federated%20Learning%20Methods%20in%20Heterogeneous%20Scenarios&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Pei,%20Jiaming&rft.date=2024&rft.volume=70&rft.issue=3&rft.spage=5983&rft.epage=5999&rft.pages=5983-5999&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3385440&rft_dat=%3Cproquest_ieee_%3E3144174785%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c207t-5916e369d77125b8c9f7d269d51d8366362a7eec9673ca029478893fc78f68423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144174785&rft_id=info:pmid/&rft_ieee_id=10492865&rfr_iscdi=true |