Loading…
Ontology for Contextual Fake News Assessment Based on Text and Images
The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 198 |
container_issue | |
container_start_page | 191 |
container_title | |
container_volume | |
creator | K, Chandrasekaran A, Kandasamy M, Venkatesan P, Prabhavathi M, Gokuldhev C, Aishwarya |
description | The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in the context of social media. We investigate the role of social engineering tactics in crafting and dispersing fake news and advocate for a comprehensive multi-contextual perspective that covers content, source, social media, psychological, and impact aspects. Using OWL (Web Ontology Language), we present an ontology framework for assessing fake news, providing a structured approach to analyze text, visuals, audio, audience behavior, source credibility, and news propagation patterns. This framework serves as a foundation for advanced detection systems, contributing to the fight against digital misinformation. |
doi_str_mv | 10.1109/PDP62718.2024.00034 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10495557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10495557</ieee_id><sourcerecordid>10495557</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-b3bbc8072c318d593756eb27edd226dde42501f03ac7b05b317b36af10538bf93</originalsourceid><addsrcrecordid>eNotzNFOwjAUgOFqYiIiT6AXfYHhaU-7s14igpIQ4QKvSbuekenYzDqjvL0kevXffPmFuFMwVQrcw_Zpm2tSxVSDNlMAQHMhJo5cgRYwRyBzKUYaiTJLFq7FTUrvZ0ZGu5FYbNqha7rDSVZdL-ddO_DP8OUbufQfLF_5O8lZSpzSkdtBPvrEUXat3J2V9G2Uq6M_cLoVV5VvEk_-OxZvy8Vu_pKtN8-r-Wyd1RrMkAUMoSyAdImqiNYh2ZyDJo5R6zxGNtqCqgB9SQFsQEUBc18psFiEyuFY3P99a2bef_b10fenvQLjrLWEv9PsSxI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ontology for Contextual Fake News Assessment Based on Text and Images</title><source>IEEE Xplore All Conference Series</source><creator>K, Chandrasekaran ; A, Kandasamy ; M, Venkatesan ; P, Prabhavathi ; M, Gokuldhev ; C, Aishwarya</creator><creatorcontrib>K, Chandrasekaran ; A, Kandasamy ; M, Venkatesan ; P, Prabhavathi ; M, Gokuldhev ; C, Aishwarya</creatorcontrib><description>The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in the context of social media. We investigate the role of social engineering tactics in crafting and dispersing fake news and advocate for a comprehensive multi-contextual perspective that covers content, source, social media, psychological, and impact aspects. Using OWL (Web Ontology Language), we present an ontology framework for assessing fake news, providing a structured approach to analyze text, visuals, audio, audience behavior, source credibility, and news propagation patterns. This framework serves as a foundation for advanced detection systems, contributing to the fight against digital misinformation.</description><identifier>EISSN: 2377-5750</identifier><identifier>EISBN: 9798350363074</identifier><identifier>DOI: 10.1109/PDP62718.2024.00034</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Audience Behavior ; Contextual ; Data Analysis ; Fake news ; Ontologies ; OWL ; OWL Ontology ; Psychology ; Quantum Deep Learning ; Quantum Machine Learning ; Social Engineering ; Social networking (online) ; Source Credibility ; Taxonomy ; Visualization</subject><ispartof>2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2024, p.191-198</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10495557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10495557$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>K, Chandrasekaran</creatorcontrib><creatorcontrib>A, Kandasamy</creatorcontrib><creatorcontrib>M, Venkatesan</creatorcontrib><creatorcontrib>P, Prabhavathi</creatorcontrib><creatorcontrib>M, Gokuldhev</creatorcontrib><creatorcontrib>C, Aishwarya</creatorcontrib><title>Ontology for Contextual Fake News Assessment Based on Text and Images</title><title>2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</title><addtitle>PDP</addtitle><description>The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in the context of social media. We investigate the role of social engineering tactics in crafting and dispersing fake news and advocate for a comprehensive multi-contextual perspective that covers content, source, social media, psychological, and impact aspects. Using OWL (Web Ontology Language), we present an ontology framework for assessing fake news, providing a structured approach to analyze text, visuals, audio, audience behavior, source credibility, and news propagation patterns. This framework serves as a foundation for advanced detection systems, contributing to the fight against digital misinformation.</description><subject>Adaptation models</subject><subject>Audience Behavior</subject><subject>Contextual</subject><subject>Data Analysis</subject><subject>Fake news</subject><subject>Ontologies</subject><subject>OWL</subject><subject>OWL Ontology</subject><subject>Psychology</subject><subject>Quantum Deep Learning</subject><subject>Quantum Machine Learning</subject><subject>Social Engineering</subject><subject>Social networking (online)</subject><subject>Source Credibility</subject><subject>Taxonomy</subject><subject>Visualization</subject><issn>2377-5750</issn><isbn>9798350363074</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzNFOwjAUgOFqYiIiT6AXfYHhaU-7s14igpIQ4QKvSbuekenYzDqjvL0kevXffPmFuFMwVQrcw_Zpm2tSxVSDNlMAQHMhJo5cgRYwRyBzKUYaiTJLFq7FTUrvZ0ZGu5FYbNqha7rDSVZdL-ddO_DP8OUbufQfLF_5O8lZSpzSkdtBPvrEUXat3J2V9G2Uq6M_cLoVV5VvEk_-OxZvy8Vu_pKtN8-r-Wyd1RrMkAUMoSyAdImqiNYh2ZyDJo5R6zxGNtqCqgB9SQFsQEUBc18psFiEyuFY3P99a2bef_b10fenvQLjrLWEv9PsSxI</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>K, Chandrasekaran</creator><creator>A, Kandasamy</creator><creator>M, Venkatesan</creator><creator>P, Prabhavathi</creator><creator>M, Gokuldhev</creator><creator>C, Aishwarya</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240320</creationdate><title>Ontology for Contextual Fake News Assessment Based on Text and Images</title><author>K, Chandrasekaran ; A, Kandasamy ; M, Venkatesan ; P, Prabhavathi ; M, Gokuldhev ; C, Aishwarya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-b3bbc8072c318d593756eb27edd226dde42501f03ac7b05b317b36af10538bf93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Audience Behavior</topic><topic>Contextual</topic><topic>Data Analysis</topic><topic>Fake news</topic><topic>Ontologies</topic><topic>OWL</topic><topic>OWL Ontology</topic><topic>Psychology</topic><topic>Quantum Deep Learning</topic><topic>Quantum Machine Learning</topic><topic>Social Engineering</topic><topic>Social networking (online)</topic><topic>Source Credibility</topic><topic>Taxonomy</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>K, Chandrasekaran</creatorcontrib><creatorcontrib>A, Kandasamy</creatorcontrib><creatorcontrib>M, Venkatesan</creatorcontrib><creatorcontrib>P, Prabhavathi</creatorcontrib><creatorcontrib>M, Gokuldhev</creatorcontrib><creatorcontrib>C, Aishwarya</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>K, Chandrasekaran</au><au>A, Kandasamy</au><au>M, Venkatesan</au><au>P, Prabhavathi</au><au>M, Gokuldhev</au><au>C, Aishwarya</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ontology for Contextual Fake News Assessment Based on Text and Images</atitle><btitle>2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</btitle><stitle>PDP</stitle><date>2024-03-20</date><risdate>2024</risdate><spage>191</spage><epage>198</epage><pages>191-198</pages><eissn>2377-5750</eissn><eisbn>9798350363074</eisbn><coden>IEEPAD</coden><abstract>The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in the context of social media. We investigate the role of social engineering tactics in crafting and dispersing fake news and advocate for a comprehensive multi-contextual perspective that covers content, source, social media, psychological, and impact aspects. Using OWL (Web Ontology Language), we present an ontology framework for assessing fake news, providing a structured approach to analyze text, visuals, audio, audience behavior, source credibility, and news propagation patterns. This framework serves as a foundation for advanced detection systems, contributing to the fight against digital misinformation.</abstract><pub>IEEE</pub><doi>10.1109/PDP62718.2024.00034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2377-5750 |
ispartof | 2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2024, p.191-198 |
issn | 2377-5750 |
language | eng |
recordid | cdi_ieee_primary_10495557 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Audience Behavior Contextual Data Analysis Fake news Ontologies OWL OWL Ontology Psychology Quantum Deep Learning Quantum Machine Learning Social Engineering Social networking (online) Source Credibility Taxonomy Visualization |
title | Ontology for Contextual Fake News Assessment Based on Text and Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ontology%20for%20Contextual%20Fake%20News%20Assessment%20Based%20on%20Text%20and%20Images&rft.btitle=2024%2032nd%20Euromicro%20International%20Conference%20on%20Parallel,%20Distributed%20and%20Network-Based%20Processing%20(PDP)&rft.au=K,%20Chandrasekaran&rft.date=2024-03-20&rft.spage=191&rft.epage=198&rft.pages=191-198&rft.eissn=2377-5750&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PDP62718.2024.00034&rft.eisbn=9798350363074&rft_dat=%3Cieee_CHZPO%3E10495557%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-b3bbc8072c318d593756eb27edd226dde42501f03ac7b05b317b36af10538bf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10495557&rfr_iscdi=true |