Loading…

Ontology for Contextual Fake News Assessment Based on Text and Images

The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in...

Full description

Saved in:
Bibliographic Details
Main Authors: K, Chandrasekaran, A, Kandasamy, M, Venkatesan, P, Prabhavathi, M, Gokuldhev, C, Aishwarya
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 198
container_issue
container_start_page 191
container_title
container_volume
creator K, Chandrasekaran
A, Kandasamy
M, Venkatesan
P, Prabhavathi
M, Gokuldhev
C, Aishwarya
description The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in the context of social media. We investigate the role of social engineering tactics in crafting and dispersing fake news and advocate for a comprehensive multi-contextual perspective that covers content, source, social media, psychological, and impact aspects. Using OWL (Web Ontology Language), we present an ontology framework for assessing fake news, providing a structured approach to analyze text, visuals, audio, audience behavior, source credibility, and news propagation patterns. This framework serves as a foundation for advanced detection systems, contributing to the fight against digital misinformation.
doi_str_mv 10.1109/PDP62718.2024.00034
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10495557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10495557</ieee_id><sourcerecordid>10495557</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-b3bbc8072c318d593756eb27edd226dde42501f03ac7b05b317b36af10538bf93</originalsourceid><addsrcrecordid>eNotzNFOwjAUgOFqYiIiT6AXfYHhaU-7s14igpIQ4QKvSbuekenYzDqjvL0kevXffPmFuFMwVQrcw_Zpm2tSxVSDNlMAQHMhJo5cgRYwRyBzKUYaiTJLFq7FTUrvZ0ZGu5FYbNqha7rDSVZdL-ddO_DP8OUbufQfLF_5O8lZSpzSkdtBPvrEUXat3J2V9G2Uq6M_cLoVV5VvEk_-OxZvy8Vu_pKtN8-r-Wyd1RrMkAUMoSyAdImqiNYh2ZyDJo5R6zxGNtqCqgB9SQFsQEUBc18psFiEyuFY3P99a2bef_b10fenvQLjrLWEv9PsSxI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ontology for Contextual Fake News Assessment Based on Text and Images</title><source>IEEE Xplore All Conference Series</source><creator>K, Chandrasekaran ; A, Kandasamy ; M, Venkatesan ; P, Prabhavathi ; M, Gokuldhev ; C, Aishwarya</creator><creatorcontrib>K, Chandrasekaran ; A, Kandasamy ; M, Venkatesan ; P, Prabhavathi ; M, Gokuldhev ; C, Aishwarya</creatorcontrib><description>The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in the context of social media. We investigate the role of social engineering tactics in crafting and dispersing fake news and advocate for a comprehensive multi-contextual perspective that covers content, source, social media, psychological, and impact aspects. Using OWL (Web Ontology Language), we present an ontology framework for assessing fake news, providing a structured approach to analyze text, visuals, audio, audience behavior, source credibility, and news propagation patterns. This framework serves as a foundation for advanced detection systems, contributing to the fight against digital misinformation.</description><identifier>EISSN: 2377-5750</identifier><identifier>EISBN: 9798350363074</identifier><identifier>DOI: 10.1109/PDP62718.2024.00034</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Audience Behavior ; Contextual ; Data Analysis ; Fake news ; Ontologies ; OWL ; OWL Ontology ; Psychology ; Quantum Deep Learning ; Quantum Machine Learning ; Social Engineering ; Social networking (online) ; Source Credibility ; Taxonomy ; Visualization</subject><ispartof>2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2024, p.191-198</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10495557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10495557$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>K, Chandrasekaran</creatorcontrib><creatorcontrib>A, Kandasamy</creatorcontrib><creatorcontrib>M, Venkatesan</creatorcontrib><creatorcontrib>P, Prabhavathi</creatorcontrib><creatorcontrib>M, Gokuldhev</creatorcontrib><creatorcontrib>C, Aishwarya</creatorcontrib><title>Ontology for Contextual Fake News Assessment Based on Text and Images</title><title>2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</title><addtitle>PDP</addtitle><description>The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in the context of social media. We investigate the role of social engineering tactics in crafting and dispersing fake news and advocate for a comprehensive multi-contextual perspective that covers content, source, social media, psychological, and impact aspects. Using OWL (Web Ontology Language), we present an ontology framework for assessing fake news, providing a structured approach to analyze text, visuals, audio, audience behavior, source credibility, and news propagation patterns. This framework serves as a foundation for advanced detection systems, contributing to the fight against digital misinformation.</description><subject>Adaptation models</subject><subject>Audience Behavior</subject><subject>Contextual</subject><subject>Data Analysis</subject><subject>Fake news</subject><subject>Ontologies</subject><subject>OWL</subject><subject>OWL Ontology</subject><subject>Psychology</subject><subject>Quantum Deep Learning</subject><subject>Quantum Machine Learning</subject><subject>Social Engineering</subject><subject>Social networking (online)</subject><subject>Source Credibility</subject><subject>Taxonomy</subject><subject>Visualization</subject><issn>2377-5750</issn><isbn>9798350363074</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzNFOwjAUgOFqYiIiT6AXfYHhaU-7s14igpIQ4QKvSbuekenYzDqjvL0kevXffPmFuFMwVQrcw_Zpm2tSxVSDNlMAQHMhJo5cgRYwRyBzKUYaiTJLFq7FTUrvZ0ZGu5FYbNqha7rDSVZdL-ddO_DP8OUbufQfLF_5O8lZSpzSkdtBPvrEUXat3J2V9G2Uq6M_cLoVV5VvEk_-OxZvy8Vu_pKtN8-r-Wyd1RrMkAUMoSyAdImqiNYh2ZyDJo5R6zxGNtqCqgB9SQFsQEUBc18psFiEyuFY3P99a2bef_b10fenvQLjrLWEv9PsSxI</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>K, Chandrasekaran</creator><creator>A, Kandasamy</creator><creator>M, Venkatesan</creator><creator>P, Prabhavathi</creator><creator>M, Gokuldhev</creator><creator>C, Aishwarya</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240320</creationdate><title>Ontology for Contextual Fake News Assessment Based on Text and Images</title><author>K, Chandrasekaran ; A, Kandasamy ; M, Venkatesan ; P, Prabhavathi ; M, Gokuldhev ; C, Aishwarya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-b3bbc8072c318d593756eb27edd226dde42501f03ac7b05b317b36af10538bf93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Audience Behavior</topic><topic>Contextual</topic><topic>Data Analysis</topic><topic>Fake news</topic><topic>Ontologies</topic><topic>OWL</topic><topic>OWL Ontology</topic><topic>Psychology</topic><topic>Quantum Deep Learning</topic><topic>Quantum Machine Learning</topic><topic>Social Engineering</topic><topic>Social networking (online)</topic><topic>Source Credibility</topic><topic>Taxonomy</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>K, Chandrasekaran</creatorcontrib><creatorcontrib>A, Kandasamy</creatorcontrib><creatorcontrib>M, Venkatesan</creatorcontrib><creatorcontrib>P, Prabhavathi</creatorcontrib><creatorcontrib>M, Gokuldhev</creatorcontrib><creatorcontrib>C, Aishwarya</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>K, Chandrasekaran</au><au>A, Kandasamy</au><au>M, Venkatesan</au><au>P, Prabhavathi</au><au>M, Gokuldhev</au><au>C, Aishwarya</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ontology for Contextual Fake News Assessment Based on Text and Images</atitle><btitle>2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</btitle><stitle>PDP</stitle><date>2024-03-20</date><risdate>2024</risdate><spage>191</spage><epage>198</epage><pages>191-198</pages><eissn>2377-5750</eissn><eisbn>9798350363074</eisbn><coden>IEEPAD</coden><abstract>The spread of false news on social networks is a major challenge in the digital age across various sectors, encompassing technology, politics, public health, and finance. This paper introduces an ontology-based method that combines text and image analysis to evaluate the accuracy of news stories in the context of social media. We investigate the role of social engineering tactics in crafting and dispersing fake news and advocate for a comprehensive multi-contextual perspective that covers content, source, social media, psychological, and impact aspects. Using OWL (Web Ontology Language), we present an ontology framework for assessing fake news, providing a structured approach to analyze text, visuals, audio, audience behavior, source credibility, and news propagation patterns. This framework serves as a foundation for advanced detection systems, contributing to the fight against digital misinformation.</abstract><pub>IEEE</pub><doi>10.1109/PDP62718.2024.00034</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2377-5750
ispartof 2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2024, p.191-198
issn 2377-5750
language eng
recordid cdi_ieee_primary_10495557
source IEEE Xplore All Conference Series
subjects Adaptation models
Audience Behavior
Contextual
Data Analysis
Fake news
Ontologies
OWL
OWL Ontology
Psychology
Quantum Deep Learning
Quantum Machine Learning
Social Engineering
Social networking (online)
Source Credibility
Taxonomy
Visualization
title Ontology for Contextual Fake News Assessment Based on Text and Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ontology%20for%20Contextual%20Fake%20News%20Assessment%20Based%20on%20Text%20and%20Images&rft.btitle=2024%2032nd%20Euromicro%20International%20Conference%20on%20Parallel,%20Distributed%20and%20Network-Based%20Processing%20(PDP)&rft.au=K,%20Chandrasekaran&rft.date=2024-03-20&rft.spage=191&rft.epage=198&rft.pages=191-198&rft.eissn=2377-5750&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PDP62718.2024.00034&rft.eisbn=9798350363074&rft_dat=%3Cieee_CHZPO%3E10495557%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-b3bbc8072c318d593756eb27edd226dde42501f03ac7b05b317b36af10538bf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10495557&rfr_iscdi=true