Loading…
Hidden Markov models for silhouette classification
In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with ot...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3 |
---|---|
cites | |
container_end_page | 402 |
container_issue | |
container_start_page | 395 |
container_title | |
container_volume | 13 |
creator | Abd-Almageed, W. Smith, C. |
description | In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with other techniques that use hidden Markov models for object classification from silhouettes is presented. |
doi_str_mv | 10.1109/WAC.2002.1049575 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1049575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1049575</ieee_id><sourcerecordid>1049575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAdEUGr2gpv8QOK9855lCWqFFjeKyzKPGxxNO5KJgn-vYFcHzuLAYewaoUcEd_u6HnoOwHsE6ZRRZ6xxxqK1TgiFVl-wptZ3AEAnjTTmkvFNTomO7c7PH-W7PZREU23HMrc1T2_li5aF2jj5WvOYo19yOV6x89FPlZoTV-zl_u552HTbp4fHYb3tIud86bQDxOS15tIaaYPVEYlQp-SjigDBRVAioOcyoodk__xoAykOzjoMYsVu_ruZiPafcz74-Wd_OhO_29hDNA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hidden Markov models for silhouette classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abd-Almageed, W. ; Smith, C.</creator><creatorcontrib>Abd-Almageed, W. ; Smith, C.</creatorcontrib><description>In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with other techniques that use hidden Markov models for object classification from silhouettes is presented.</description><identifier>ISBN: 9781889335186</identifier><identifier>ISBN: 1889335185</identifier><identifier>DOI: 10.1109/WAC.2002.1049575</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Feature extraction ; Fourier transforms ; Hidden Markov models ; Neural networks ; Parameter estimation ; Pattern recognition ; Probability distribution ; Shape measurement ; Wavelet transforms</subject><ispartof>Proceedings of the 5th Biannual World Automation Congress, 2002, Vol.13, p.395-402</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1049575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1049575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abd-Almageed, W.</creatorcontrib><creatorcontrib>Smith, C.</creatorcontrib><title>Hidden Markov models for silhouette classification</title><title>Proceedings of the 5th Biannual World Automation Congress</title><addtitle>WAC</addtitle><description>In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with other techniques that use hidden Markov models for object classification from silhouettes is presented.</description><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Hidden Markov models</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Pattern recognition</subject><subject>Probability distribution</subject><subject>Shape measurement</subject><subject>Wavelet transforms</subject><isbn>9781889335186</isbn><isbn>1889335185</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQAdEUGr2gpv8QOK9855lCWqFFjeKyzKPGxxNO5KJgn-vYFcHzuLAYewaoUcEd_u6HnoOwHsE6ZRRZ6xxxqK1TgiFVl-wptZ3AEAnjTTmkvFNTomO7c7PH-W7PZREU23HMrc1T2_li5aF2jj5WvOYo19yOV6x89FPlZoTV-zl_u552HTbp4fHYb3tIud86bQDxOS15tIaaYPVEYlQp-SjigDBRVAioOcyoodk__xoAykOzjoMYsVu_ruZiPafcz74-Wd_OhO_29hDNA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Abd-Almageed, W.</creator><creator>Smith, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Hidden Markov models for silhouette classification</title><author>Abd-Almageed, W. ; Smith, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Hidden Markov models</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Pattern recognition</topic><topic>Probability distribution</topic><topic>Shape measurement</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Abd-Almageed, W.</creatorcontrib><creatorcontrib>Smith, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abd-Almageed, W.</au><au>Smith, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hidden Markov models for silhouette classification</atitle><btitle>Proceedings of the 5th Biannual World Automation Congress</btitle><stitle>WAC</stitle><date>2002</date><risdate>2002</risdate><volume>13</volume><spage>395</spage><epage>402</epage><pages>395-402</pages><isbn>9781889335186</isbn><isbn>1889335185</isbn><abstract>In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with other techniques that use hidden Markov models for object classification from silhouettes is presented.</abstract><pub>IEEE</pub><doi>10.1109/WAC.2002.1049575</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781889335186 |
ispartof | Proceedings of the 5th Biannual World Automation Congress, 2002, Vol.13, p.395-402 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1049575 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer vision Feature extraction Fourier transforms Hidden Markov models Neural networks Parameter estimation Pattern recognition Probability distribution Shape measurement Wavelet transforms |
title | Hidden Markov models for silhouette classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hidden%20Markov%20models%20for%20silhouette%20classification&rft.btitle=Proceedings%20of%20the%205th%20Biannual%20World%20Automation%20Congress&rft.au=Abd-Almageed,%20W.&rft.date=2002&rft.volume=13&rft.spage=395&rft.epage=402&rft.pages=395-402&rft.isbn=9781889335186&rft.isbn_list=1889335185&rft_id=info:doi/10.1109/WAC.2002.1049575&rft_dat=%3Cieee_6IE%3E1049575%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1049575&rfr_iscdi=true |