Loading…

Hidden Markov models for silhouette classification

In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with ot...

Full description

Saved in:
Bibliographic Details
Main Authors: Abd-Almageed, W., Smith, C.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3
cites
container_end_page 402
container_issue
container_start_page 395
container_title
container_volume 13
creator Abd-Almageed, W.
Smith, C.
description In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with other techniques that use hidden Markov models for object classification from silhouettes is presented.
doi_str_mv 10.1109/WAC.2002.1049575
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1049575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1049575</ieee_id><sourcerecordid>1049575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAdEUGr2gpv8QOK9855lCWqFFjeKyzKPGxxNO5KJgn-vYFcHzuLAYewaoUcEd_u6HnoOwHsE6ZRRZ6xxxqK1TgiFVl-wptZ3AEAnjTTmkvFNTomO7c7PH-W7PZREU23HMrc1T2_li5aF2jj5WvOYo19yOV6x89FPlZoTV-zl_u552HTbp4fHYb3tIud86bQDxOS15tIaaYPVEYlQp-SjigDBRVAioOcyoodk__xoAykOzjoMYsVu_ruZiPafcz74-Wd_OhO_29hDNA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hidden Markov models for silhouette classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abd-Almageed, W. ; Smith, C.</creator><creatorcontrib>Abd-Almageed, W. ; Smith, C.</creatorcontrib><description>In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with other techniques that use hidden Markov models for object classification from silhouettes is presented.</description><identifier>ISBN: 9781889335186</identifier><identifier>ISBN: 1889335185</identifier><identifier>DOI: 10.1109/WAC.2002.1049575</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Feature extraction ; Fourier transforms ; Hidden Markov models ; Neural networks ; Parameter estimation ; Pattern recognition ; Probability distribution ; Shape measurement ; Wavelet transforms</subject><ispartof>Proceedings of the 5th Biannual World Automation Congress, 2002, Vol.13, p.395-402</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1049575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1049575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abd-Almageed, W.</creatorcontrib><creatorcontrib>Smith, C.</creatorcontrib><title>Hidden Markov models for silhouette classification</title><title>Proceedings of the 5th Biannual World Automation Congress</title><addtitle>WAC</addtitle><description>In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with other techniques that use hidden Markov models for object classification from silhouettes is presented.</description><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Hidden Markov models</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Pattern recognition</subject><subject>Probability distribution</subject><subject>Shape measurement</subject><subject>Wavelet transforms</subject><isbn>9781889335186</isbn><isbn>1889335185</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQAdEUGr2gpv8QOK9855lCWqFFjeKyzKPGxxNO5KJgn-vYFcHzuLAYewaoUcEd_u6HnoOwHsE6ZRRZ6xxxqK1TgiFVl-wptZ3AEAnjTTmkvFNTomO7c7PH-W7PZREU23HMrc1T2_li5aF2jj5WvOYo19yOV6x89FPlZoTV-zl_u552HTbp4fHYb3tIud86bQDxOS15tIaaYPVEYlQp-SjigDBRVAioOcyoodk__xoAykOzjoMYsVu_ruZiPafcz74-Wd_OhO_29hDNA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Abd-Almageed, W.</creator><creator>Smith, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Hidden Markov models for silhouette classification</title><author>Abd-Almageed, W. ; Smith, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Hidden Markov models</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Pattern recognition</topic><topic>Probability distribution</topic><topic>Shape measurement</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Abd-Almageed, W.</creatorcontrib><creatorcontrib>Smith, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abd-Almageed, W.</au><au>Smith, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hidden Markov models for silhouette classification</atitle><btitle>Proceedings of the 5th Biannual World Automation Congress</btitle><stitle>WAC</stitle><date>2002</date><risdate>2002</risdate><volume>13</volume><spage>395</spage><epage>402</epage><pages>395-402</pages><isbn>9781889335186</isbn><isbn>1889335185</isbn><abstract>In this paper, a new technique for object classification from silhouettes is presented. Hidden Markov models are used as a classification mechanism. Through a set of experiments, we show the validity of our approach and show its invariance under severe rotation conditions. Also, a comparison with other techniques that use hidden Markov models for object classification from silhouettes is presented.</abstract><pub>IEEE</pub><doi>10.1109/WAC.2002.1049575</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781889335186
ispartof Proceedings of the 5th Biannual World Automation Congress, 2002, Vol.13, p.395-402
issn
language eng
recordid cdi_ieee_primary_1049575
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Feature extraction
Fourier transforms
Hidden Markov models
Neural networks
Parameter estimation
Pattern recognition
Probability distribution
Shape measurement
Wavelet transforms
title Hidden Markov models for silhouette classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hidden%20Markov%20models%20for%20silhouette%20classification&rft.btitle=Proceedings%20of%20the%205th%20Biannual%20World%20Automation%20Congress&rft.au=Abd-Almageed,%20W.&rft.date=2002&rft.volume=13&rft.spage=395&rft.epage=402&rft.pages=395-402&rft.isbn=9781889335186&rft.isbn_list=1889335185&rft_id=info:doi/10.1109/WAC.2002.1049575&rft_dat=%3Cieee_6IE%3E1049575%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-69011da66248748b86c1ee16ddac5c00b9c053b1a24c1a0d8dacf8be5209891b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1049575&rfr_iscdi=true