Loading…
Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications
In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Elec...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1533 |
container_issue | |
container_start_page | 1525 |
container_title | |
container_volume | |
creator | Ishmakhametov, Namazbai Naser, Mohammad Y. M. Bhattacharya, Sylvia |
description | In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Electromyography (EMG), Electrocardiography (ECG), and others. Nonetheless, the inherent scientific diversity within biomedical research often poses challenges, with practices sometimes misaligned with machine learning and standard statistical principles. This review analyzes 82 influential articles (2018-2023) from IEEE Xplore, aiming to identify weaknesses and assess overall rigor. It emphasizes the need for enhanced research quality and reproducibility. The key findings reveal that in over half of the articles, the ratio of female-to-male participants recruited for data collection is below 50%. Additionally, nearly 30% of the studies involve fewer than 10 subjects in data collection, with only 7% providing justification for their sample size. Moreover, only about 34% of the articles provide access to their data, and a mere 26% report performance using a confusion matrix. These insights underscore critical areas for improvement, enhancing the robustness and transparency of applications in the physiological signal processing domain. |
doi_str_mv | 10.1109/SoutheastCon52093.2024.10500274 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10500274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10500274</ieee_id><sourcerecordid>10500274</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-c97240dbd151b294beed7e1af9fc9a19b7ec078e941959331290c9e8706fdc803</originalsourceid><addsrcrecordid>eNo1kE1PwzAQRA0SEqX0H3DIjVPKrh3j7LGq-JKKqCgIbpXjbFKjYFdxOPTfEwSc5vBGT6MR4hJhjgh0tYlfw45tGpYxaAmk5hJkMUfQANIUR2JGhkqlQaFBMMdiglqXOejy_VScpfQx1qBAPRFvi5Q4JR_abDRmz76NfRab7NG6nQ-crdj24Yf6kK13h-RjF1vvbJdtfBvGWPfR_QkW-303osHHkM7FSWO7xLO_nIrX25uX5X2-erp7WC5WuR8HDLkjIwuoqxo1VpKKirk2jLahxpFFqgw7MCVTgaRJKZQEjrg0cN3UrgQ1FRe_Xs_M233vP21_2P4fob4BMbBXRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications</title><source>IEEE Xplore All Conference Series</source><creator>Ishmakhametov, Namazbai ; Naser, Mohammad Y. M. ; Bhattacharya, Sylvia</creator><creatorcontrib>Ishmakhametov, Namazbai ; Naser, Mohammad Y. M. ; Bhattacharya, Sylvia</creatorcontrib><description>In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Electromyography (EMG), Electrocardiography (ECG), and others. Nonetheless, the inherent scientific diversity within biomedical research often poses challenges, with practices sometimes misaligned with machine learning and standard statistical principles. This review analyzes 82 influential articles (2018-2023) from IEEE Xplore, aiming to identify weaknesses and assess overall rigor. It emphasizes the need for enhanced research quality and reproducibility. The key findings reveal that in over half of the articles, the ratio of female-to-male participants recruited for data collection is below 50%. Additionally, nearly 30% of the studies involve fewer than 10 subjects in data collection, with only 7% providing justification for their sample size. Moreover, only about 34% of the articles provide access to their data, and a mere 26% report performance using a confusion matrix. These insights underscore critical areas for improvement, enhancing the robustness and transparency of applications in the physiological signal processing domain.</description><identifier>EISSN: 1558-058X</identifier><identifier>EISBN: 9798350317107</identifier><identifier>DOI: 10.1109/SoutheastCon52093.2024.10500274</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data collection ; ECG ; EEG ; Electrocardiography ; Electromyography ; EMG ; Machine learning ; Physiological Signals ; Physiology ; Replicability ; Reproducibility ; Reviews ; Rigor ; Signal processing ; Synchronization</subject><ispartof>SoutheastCon 2024, 2024, p.1525-1533</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10500274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10500274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishmakhametov, Namazbai</creatorcontrib><creatorcontrib>Naser, Mohammad Y. M.</creatorcontrib><creatorcontrib>Bhattacharya, Sylvia</creatorcontrib><title>Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications</title><title>SoutheastCon 2024</title><addtitle>SOUTHEASTCON</addtitle><description>In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Electromyography (EMG), Electrocardiography (ECG), and others. Nonetheless, the inherent scientific diversity within biomedical research often poses challenges, with practices sometimes misaligned with machine learning and standard statistical principles. This review analyzes 82 influential articles (2018-2023) from IEEE Xplore, aiming to identify weaknesses and assess overall rigor. It emphasizes the need for enhanced research quality and reproducibility. The key findings reveal that in over half of the articles, the ratio of female-to-male participants recruited for data collection is below 50%. Additionally, nearly 30% of the studies involve fewer than 10 subjects in data collection, with only 7% providing justification for their sample size. Moreover, only about 34% of the articles provide access to their data, and a mere 26% report performance using a confusion matrix. These insights underscore critical areas for improvement, enhancing the robustness and transparency of applications in the physiological signal processing domain.</description><subject>Data collection</subject><subject>ECG</subject><subject>EEG</subject><subject>Electrocardiography</subject><subject>Electromyography</subject><subject>EMG</subject><subject>Machine learning</subject><subject>Physiological Signals</subject><subject>Physiology</subject><subject>Replicability</subject><subject>Reproducibility</subject><subject>Reviews</subject><subject>Rigor</subject><subject>Signal processing</subject><subject>Synchronization</subject><issn>1558-058X</issn><isbn>9798350317107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1PwzAQRA0SEqX0H3DIjVPKrh3j7LGq-JKKqCgIbpXjbFKjYFdxOPTfEwSc5vBGT6MR4hJhjgh0tYlfw45tGpYxaAmk5hJkMUfQANIUR2JGhkqlQaFBMMdiglqXOejy_VScpfQx1qBAPRFvi5Q4JR_abDRmz76NfRab7NG6nQ-crdj24Yf6kK13h-RjF1vvbJdtfBvGWPfR_QkW-303osHHkM7FSWO7xLO_nIrX25uX5X2-erp7WC5WuR8HDLkjIwuoqxo1VpKKirk2jLahxpFFqgw7MCVTgaRJKZQEjrg0cN3UrgQ1FRe_Xs_M233vP21_2P4fob4BMbBXRg</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Ishmakhametov, Namazbai</creator><creator>Naser, Mohammad Y. M.</creator><creator>Bhattacharya, Sylvia</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240315</creationdate><title>Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications</title><author>Ishmakhametov, Namazbai ; Naser, Mohammad Y. M. ; Bhattacharya, Sylvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-c97240dbd151b294beed7e1af9fc9a19b7ec078e941959331290c9e8706fdc803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data collection</topic><topic>ECG</topic><topic>EEG</topic><topic>Electrocardiography</topic><topic>Electromyography</topic><topic>EMG</topic><topic>Machine learning</topic><topic>Physiological Signals</topic><topic>Physiology</topic><topic>Replicability</topic><topic>Reproducibility</topic><topic>Reviews</topic><topic>Rigor</topic><topic>Signal processing</topic><topic>Synchronization</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishmakhametov, Namazbai</creatorcontrib><creatorcontrib>Naser, Mohammad Y. M.</creatorcontrib><creatorcontrib>Bhattacharya, Sylvia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishmakhametov, Namazbai</au><au>Naser, Mohammad Y. M.</au><au>Bhattacharya, Sylvia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications</atitle><btitle>SoutheastCon 2024</btitle><stitle>SOUTHEASTCON</stitle><date>2024-03-15</date><risdate>2024</risdate><spage>1525</spage><epage>1533</epage><pages>1525-1533</pages><eissn>1558-058X</eissn><eisbn>9798350317107</eisbn><abstract>In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Electromyography (EMG), Electrocardiography (ECG), and others. Nonetheless, the inherent scientific diversity within biomedical research often poses challenges, with practices sometimes misaligned with machine learning and standard statistical principles. This review analyzes 82 influential articles (2018-2023) from IEEE Xplore, aiming to identify weaknesses and assess overall rigor. It emphasizes the need for enhanced research quality and reproducibility. The key findings reveal that in over half of the articles, the ratio of female-to-male participants recruited for data collection is below 50%. Additionally, nearly 30% of the studies involve fewer than 10 subjects in data collection, with only 7% providing justification for their sample size. Moreover, only about 34% of the articles provide access to their data, and a mere 26% report performance using a confusion matrix. These insights underscore critical areas for improvement, enhancing the robustness and transparency of applications in the physiological signal processing domain.</abstract><pub>IEEE</pub><doi>10.1109/SoutheastCon52093.2024.10500274</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1558-058X |
ispartof | SoutheastCon 2024, 2024, p.1525-1533 |
issn | 1558-058X |
language | eng |
recordid | cdi_ieee_primary_10500274 |
source | IEEE Xplore All Conference Series |
subjects | Data collection ECG EEG Electrocardiography Electromyography EMG Machine learning Physiological Signals Physiology Replicability Reproducibility Reviews Rigor Signal processing Synchronization |
title | Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20the%20Rigor%20of%20Machine%20Learning%20in%20Physiological%20Signal%20Processing%20Applications&rft.btitle=SoutheastCon%202024&rft.au=Ishmakhametov,%20Namazbai&rft.date=2024-03-15&rft.spage=1525&rft.epage=1533&rft.pages=1525-1533&rft.eissn=1558-058X&rft_id=info:doi/10.1109/SoutheastCon52093.2024.10500274&rft.eisbn=9798350317107&rft_dat=%3Cieee_CHZPO%3E10500274%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-c97240dbd151b294beed7e1af9fc9a19b7ec078e941959331290c9e8706fdc803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10500274&rfr_iscdi=true |