Loading…

Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications

In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Elec...

Full description

Saved in:
Bibliographic Details
Main Authors: Ishmakhametov, Namazbai, Naser, Mohammad Y. M., Bhattacharya, Sylvia
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1533
container_issue
container_start_page 1525
container_title
container_volume
creator Ishmakhametov, Namazbai
Naser, Mohammad Y. M.
Bhattacharya, Sylvia
description In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Electromyography (EMG), Electrocardiography (ECG), and others. Nonetheless, the inherent scientific diversity within biomedical research often poses challenges, with practices sometimes misaligned with machine learning and standard statistical principles. This review analyzes 82 influential articles (2018-2023) from IEEE Xplore, aiming to identify weaknesses and assess overall rigor. It emphasizes the need for enhanced research quality and reproducibility. The key findings reveal that in over half of the articles, the ratio of female-to-male participants recruited for data collection is below 50%. Additionally, nearly 30% of the studies involve fewer than 10 subjects in data collection, with only 7% providing justification for their sample size. Moreover, only about 34% of the articles provide access to their data, and a mere 26% report performance using a confusion matrix. These insights underscore critical areas for improvement, enhancing the robustness and transparency of applications in the physiological signal processing domain.
doi_str_mv 10.1109/SoutheastCon52093.2024.10500274
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10500274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10500274</ieee_id><sourcerecordid>10500274</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-c97240dbd151b294beed7e1af9fc9a19b7ec078e941959331290c9e8706fdc803</originalsourceid><addsrcrecordid>eNo1kE1PwzAQRA0SEqX0H3DIjVPKrh3j7LGq-JKKqCgIbpXjbFKjYFdxOPTfEwSc5vBGT6MR4hJhjgh0tYlfw45tGpYxaAmk5hJkMUfQANIUR2JGhkqlQaFBMMdiglqXOejy_VScpfQx1qBAPRFvi5Q4JR_abDRmz76NfRab7NG6nQ-crdj24Yf6kK13h-RjF1vvbJdtfBvGWPfR_QkW-303osHHkM7FSWO7xLO_nIrX25uX5X2-erp7WC5WuR8HDLkjIwuoqxo1VpKKirk2jLahxpFFqgw7MCVTgaRJKZQEjrg0cN3UrgQ1FRe_Xs_M233vP21_2P4fob4BMbBXRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications</title><source>IEEE Xplore All Conference Series</source><creator>Ishmakhametov, Namazbai ; Naser, Mohammad Y. M. ; Bhattacharya, Sylvia</creator><creatorcontrib>Ishmakhametov, Namazbai ; Naser, Mohammad Y. M. ; Bhattacharya, Sylvia</creatorcontrib><description>In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Electromyography (EMG), Electrocardiography (ECG), and others. Nonetheless, the inherent scientific diversity within biomedical research often poses challenges, with practices sometimes misaligned with machine learning and standard statistical principles. This review analyzes 82 influential articles (2018-2023) from IEEE Xplore, aiming to identify weaknesses and assess overall rigor. It emphasizes the need for enhanced research quality and reproducibility. The key findings reveal that in over half of the articles, the ratio of female-to-male participants recruited for data collection is below 50%. Additionally, nearly 30% of the studies involve fewer than 10 subjects in data collection, with only 7% providing justification for their sample size. Moreover, only about 34% of the articles provide access to their data, and a mere 26% report performance using a confusion matrix. These insights underscore critical areas for improvement, enhancing the robustness and transparency of applications in the physiological signal processing domain.</description><identifier>EISSN: 1558-058X</identifier><identifier>EISBN: 9798350317107</identifier><identifier>DOI: 10.1109/SoutheastCon52093.2024.10500274</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data collection ; ECG ; EEG ; Electrocardiography ; Electromyography ; EMG ; Machine learning ; Physiological Signals ; Physiology ; Replicability ; Reproducibility ; Reviews ; Rigor ; Signal processing ; Synchronization</subject><ispartof>SoutheastCon 2024, 2024, p.1525-1533</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10500274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10500274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishmakhametov, Namazbai</creatorcontrib><creatorcontrib>Naser, Mohammad Y. M.</creatorcontrib><creatorcontrib>Bhattacharya, Sylvia</creatorcontrib><title>Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications</title><title>SoutheastCon 2024</title><addtitle>SOUTHEASTCON</addtitle><description>In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Electromyography (EMG), Electrocardiography (ECG), and others. Nonetheless, the inherent scientific diversity within biomedical research often poses challenges, with practices sometimes misaligned with machine learning and standard statistical principles. This review analyzes 82 influential articles (2018-2023) from IEEE Xplore, aiming to identify weaknesses and assess overall rigor. It emphasizes the need for enhanced research quality and reproducibility. The key findings reveal that in over half of the articles, the ratio of female-to-male participants recruited for data collection is below 50%. Additionally, nearly 30% of the studies involve fewer than 10 subjects in data collection, with only 7% providing justification for their sample size. Moreover, only about 34% of the articles provide access to their data, and a mere 26% report performance using a confusion matrix. These insights underscore critical areas for improvement, enhancing the robustness and transparency of applications in the physiological signal processing domain.</description><subject>Data collection</subject><subject>ECG</subject><subject>EEG</subject><subject>Electrocardiography</subject><subject>Electromyography</subject><subject>EMG</subject><subject>Machine learning</subject><subject>Physiological Signals</subject><subject>Physiology</subject><subject>Replicability</subject><subject>Reproducibility</subject><subject>Reviews</subject><subject>Rigor</subject><subject>Signal processing</subject><subject>Synchronization</subject><issn>1558-058X</issn><isbn>9798350317107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1PwzAQRA0SEqX0H3DIjVPKrh3j7LGq-JKKqCgIbpXjbFKjYFdxOPTfEwSc5vBGT6MR4hJhjgh0tYlfw45tGpYxaAmk5hJkMUfQANIUR2JGhkqlQaFBMMdiglqXOejy_VScpfQx1qBAPRFvi5Q4JR_abDRmz76NfRab7NG6nQ-crdj24Yf6kK13h-RjF1vvbJdtfBvGWPfR_QkW-303osHHkM7FSWO7xLO_nIrX25uX5X2-erp7WC5WuR8HDLkjIwuoqxo1VpKKirk2jLahxpFFqgw7MCVTgaRJKZQEjrg0cN3UrgQ1FRe_Xs_M233vP21_2P4fob4BMbBXRg</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Ishmakhametov, Namazbai</creator><creator>Naser, Mohammad Y. M.</creator><creator>Bhattacharya, Sylvia</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20240315</creationdate><title>Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications</title><author>Ishmakhametov, Namazbai ; Naser, Mohammad Y. M. ; Bhattacharya, Sylvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-c97240dbd151b294beed7e1af9fc9a19b7ec078e941959331290c9e8706fdc803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data collection</topic><topic>ECG</topic><topic>EEG</topic><topic>Electrocardiography</topic><topic>Electromyography</topic><topic>EMG</topic><topic>Machine learning</topic><topic>Physiological Signals</topic><topic>Physiology</topic><topic>Replicability</topic><topic>Reproducibility</topic><topic>Reviews</topic><topic>Rigor</topic><topic>Signal processing</topic><topic>Synchronization</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishmakhametov, Namazbai</creatorcontrib><creatorcontrib>Naser, Mohammad Y. M.</creatorcontrib><creatorcontrib>Bhattacharya, Sylvia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishmakhametov, Namazbai</au><au>Naser, Mohammad Y. M.</au><au>Bhattacharya, Sylvia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications</atitle><btitle>SoutheastCon 2024</btitle><stitle>SOUTHEASTCON</stitle><date>2024-03-15</date><risdate>2024</risdate><spage>1525</spage><epage>1533</epage><pages>1525-1533</pages><eissn>1558-058X</eissn><eisbn>9798350317107</eisbn><abstract>In the dynamic field of biomedical engineering, the pervasive integration of machine learning into physiological signal processing serves various purposes, from diagnostics to Brain-Computer Interface (BCI) and Human-Machine Interface (HMI) using techniques such as Electroencephalography (EEG), Electromyography (EMG), Electrocardiography (ECG), and others. Nonetheless, the inherent scientific diversity within biomedical research often poses challenges, with practices sometimes misaligned with machine learning and standard statistical principles. This review analyzes 82 influential articles (2018-2023) from IEEE Xplore, aiming to identify weaknesses and assess overall rigor. It emphasizes the need for enhanced research quality and reproducibility. The key findings reveal that in over half of the articles, the ratio of female-to-male participants recruited for data collection is below 50%. Additionally, nearly 30% of the studies involve fewer than 10 subjects in data collection, with only 7% providing justification for their sample size. Moreover, only about 34% of the articles provide access to their data, and a mere 26% report performance using a confusion matrix. These insights underscore critical areas for improvement, enhancing the robustness and transparency of applications in the physiological signal processing domain.</abstract><pub>IEEE</pub><doi>10.1109/SoutheastCon52093.2024.10500274</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1558-058X
ispartof SoutheastCon 2024, 2024, p.1525-1533
issn 1558-058X
language eng
recordid cdi_ieee_primary_10500274
source IEEE Xplore All Conference Series
subjects Data collection
ECG
EEG
Electrocardiography
Electromyography
EMG
Machine learning
Physiological Signals
Physiology
Replicability
Reproducibility
Reviews
Rigor
Signal processing
Synchronization
title Assessing the Rigor of Machine Learning in Physiological Signal Processing Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20the%20Rigor%20of%20Machine%20Learning%20in%20Physiological%20Signal%20Processing%20Applications&rft.btitle=SoutheastCon%202024&rft.au=Ishmakhametov,%20Namazbai&rft.date=2024-03-15&rft.spage=1525&rft.epage=1533&rft.pages=1525-1533&rft.eissn=1558-058X&rft_id=info:doi/10.1109/SoutheastCon52093.2024.10500274&rft.eisbn=9798350317107&rft_dat=%3Cieee_CHZPO%3E10500274%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-c97240dbd151b294beed7e1af9fc9a19b7ec078e941959331290c9e8706fdc803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10500274&rfr_iscdi=true