Loading…

Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments

This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless senso...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.56226-56239
Main Authors: Gao, Xiangjian, Sadjadpour, Hamid R., Dowla, Farid U., Nekoogar, Faranak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033
container_end_page 56239
container_issue
container_start_page 56226
container_title IEEE access
container_volume 12
creator Gao, Xiangjian
Sadjadpour, Hamid R.
Dowla, Farid U.
Nekoogar, Faranak
description This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless sensor networks (WSN), limited power availability with long service time requirements, and severe signal attenuation, error rates, and loss packets in harsh through-wall scenarios. The proposed system utilizes a low-power single input multiple output (SIMO) Ultra-Wideband (UWB) system with orthogonal frequency division multiplexing (OFDM), enhancing spectrum efficiency through frequency and spatial diversities. We introduce a modified water-filling algorithm, designed to optimally allocate power across subchannels based on varying channel conditions when total power budget is undefined. This algorithm specifically targets on achieving necessary system throughput, which is a critical parameter in communication designs. Our simulation results demonstrate significant energy savings and reductions in bit error rate and outage probability, offering a robust solution for nuclear safety. Furthermore, we emphasize the gap in the existing literature regarding channel models for harsh though-wall environments by developing a straightforward and comprehensive channel model using ray-tracing techniques and Friis' transmission equations. This model's accuracy is validated through a comparison of calculated results against experimentally measured results, verifying its effectiveness and applicability in different through-wall communication scenarios.
doi_str_mv 10.1109/ACCESS.2024.3389681
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10501943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10501943</ieee_id><doaj_id>oai_doaj_org_article_27d065fcf25b4d3baa78d2fc5fbca5db</doaj_id><sourcerecordid>3046910784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033</originalsourceid><addsrcrecordid>eNpNUdtu1DAQjRBIVKVfAA-WeM7iS5zYj1VYaKWiVtpW-2g5viReJfZie0H9Dn4YL6lQ_TCeOZ5zZuRTVR8R3CAE-Zfrvt_udhsMcbMhhPGWoTfVBUYtrwkl7dtX-fvqKqUDLIcViHYX1Z_7Y3aLnEEfluXknZLZBQ92zymbBexdnsBD-G1iefc5hhlIr8HTnKOs906b4Vw-xHCU40rsJ-m9mcGPoEv8apIbfQI2xIJ4l0N0fgQ3MqYJPE4xnMap3st5Blv_y8XgF-Nz-lC9s3JO5urlvqyevm0f-5v67v77bX99VytCea4VbaiitkWt5Ah3eNDa2pZhbQc9GDiopms1bCHlXDKJUWcsbSxViDEOFSTksrpddXWQB3GM5R_iswjSiX9AiKOQMTs1G4G7okStspgOjSaDlB3T2Jbxg5JUD0Xr86p1jOHnyaQsDuEUfVlfENi0HMGONaWLrF0qhpSisf-nIijOZorVTHE2U7yYWVifVpYzxrxiUIh4Q8hfUXOekQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046910784</pqid></control><display><type>article</type><title>Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments</title><source>IEEE Open Access Journals</source><creator>Gao, Xiangjian ; Sadjadpour, Hamid R. ; Dowla, Farid U. ; Nekoogar, Faranak</creator><creatorcontrib>Gao, Xiangjian ; Sadjadpour, Hamid R. ; Dowla, Farid U. ; Nekoogar, Faranak</creatorcontrib><description>This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless sensor networks (WSN), limited power availability with long service time requirements, and severe signal attenuation, error rates, and loss packets in harsh through-wall scenarios. The proposed system utilizes a low-power single input multiple output (SIMO) Ultra-Wideband (UWB) system with orthogonal frequency division multiplexing (OFDM), enhancing spectrum efficiency through frequency and spatial diversities. We introduce a modified water-filling algorithm, designed to optimally allocate power across subchannels based on varying channel conditions when total power budget is undefined. This algorithm specifically targets on achieving necessary system throughput, which is a critical parameter in communication designs. Our simulation results demonstrate significant energy savings and reductions in bit error rate and outage probability, offering a robust solution for nuclear safety. Furthermore, we emphasize the gap in the existing literature regarding channel models for harsh though-wall environments by developing a straightforward and comprehensive channel model using ray-tracing techniques and Friis' transmission equations. This model's accuracy is validated through a comparison of calculated results against experimentally measured results, verifying its effectiveness and applicability in different through-wall communication scenarios.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3389681</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bit error rate ; Channel modeling ; Channel models ; Communication systems ; Communications systems ; Design ; harsh through-wall environments ; Mathematical models ; Model accuracy ; Monitoring ; Nuclear energy ; nuclear monitoring systems ; Nuclear safety ; OFDM ; Optimization ; Orthogonal Frequency Division Multiplexing ; Power control ; Propagation losses ; Ray tracing ; Robustness (mathematics) ; Signal to noise ratio ; SIMO ; Ultra wideband technology ; Ultrawideband ; UWB ; water-filling ; Wireless sensor networks</subject><ispartof>IEEE access, 2024, Vol.12, p.56226-56239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033</cites><orcidid>0000-0003-2215-4759 ; 0000-0003-4279-4745 ; 0000-0003-1360-9918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10501943$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Gao, Xiangjian</creatorcontrib><creatorcontrib>Sadjadpour, Hamid R.</creatorcontrib><creatorcontrib>Dowla, Farid U.</creatorcontrib><creatorcontrib>Nekoogar, Faranak</creatorcontrib><title>Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless sensor networks (WSN), limited power availability with long service time requirements, and severe signal attenuation, error rates, and loss packets in harsh through-wall scenarios. The proposed system utilizes a low-power single input multiple output (SIMO) Ultra-Wideband (UWB) system with orthogonal frequency division multiplexing (OFDM), enhancing spectrum efficiency through frequency and spatial diversities. We introduce a modified water-filling algorithm, designed to optimally allocate power across subchannels based on varying channel conditions when total power budget is undefined. This algorithm specifically targets on achieving necessary system throughput, which is a critical parameter in communication designs. Our simulation results demonstrate significant energy savings and reductions in bit error rate and outage probability, offering a robust solution for nuclear safety. Furthermore, we emphasize the gap in the existing literature regarding channel models for harsh though-wall environments by developing a straightforward and comprehensive channel model using ray-tracing techniques and Friis' transmission equations. This model's accuracy is validated through a comparison of calculated results against experimentally measured results, verifying its effectiveness and applicability in different through-wall communication scenarios.</description><subject>Algorithms</subject><subject>Bit error rate</subject><subject>Channel modeling</subject><subject>Channel models</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Design</subject><subject>harsh through-wall environments</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Monitoring</subject><subject>Nuclear energy</subject><subject>nuclear monitoring systems</subject><subject>Nuclear safety</subject><subject>OFDM</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Power control</subject><subject>Propagation losses</subject><subject>Ray tracing</subject><subject>Robustness (mathematics)</subject><subject>Signal to noise ratio</subject><subject>SIMO</subject><subject>Ultra wideband technology</subject><subject>Ultrawideband</subject><subject>UWB</subject><subject>water-filling</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtu1DAQjRBIVKVfAA-WeM7iS5zYj1VYaKWiVtpW-2g5viReJfZie0H9Dn4YL6lQ_TCeOZ5zZuRTVR8R3CAE-Zfrvt_udhsMcbMhhPGWoTfVBUYtrwkl7dtX-fvqKqUDLIcViHYX1Z_7Y3aLnEEfluXknZLZBQ92zymbBexdnsBD-G1iefc5hhlIr8HTnKOs906b4Vw-xHCU40rsJ-m9mcGPoEv8apIbfQI2xIJ4l0N0fgQ3MqYJPE4xnMap3st5Blv_y8XgF-Nz-lC9s3JO5urlvqyevm0f-5v67v77bX99VytCea4VbaiitkWt5Ah3eNDa2pZhbQc9GDiopms1bCHlXDKJUWcsbSxViDEOFSTksrpddXWQB3GM5R_iswjSiX9AiKOQMTs1G4G7okStspgOjSaDlB3T2Jbxg5JUD0Xr86p1jOHnyaQsDuEUfVlfENi0HMGONaWLrF0qhpSisf-nIijOZorVTHE2U7yYWVifVpYzxrxiUIh4Q8hfUXOekQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Xiangjian</creator><creator>Sadjadpour, Hamid R.</creator><creator>Dowla, Farid U.</creator><creator>Nekoogar, Faranak</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2215-4759</orcidid><orcidid>https://orcid.org/0000-0003-4279-4745</orcidid><orcidid>https://orcid.org/0000-0003-1360-9918</orcidid></search><sort><creationdate>2024</creationdate><title>Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments</title><author>Gao, Xiangjian ; Sadjadpour, Hamid R. ; Dowla, Farid U. ; Nekoogar, Faranak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bit error rate</topic><topic>Channel modeling</topic><topic>Channel models</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Design</topic><topic>harsh through-wall environments</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Monitoring</topic><topic>Nuclear energy</topic><topic>nuclear monitoring systems</topic><topic>Nuclear safety</topic><topic>OFDM</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Power control</topic><topic>Propagation losses</topic><topic>Ray tracing</topic><topic>Robustness (mathematics)</topic><topic>Signal to noise ratio</topic><topic>SIMO</topic><topic>Ultra wideband technology</topic><topic>Ultrawideband</topic><topic>UWB</topic><topic>water-filling</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xiangjian</creatorcontrib><creatorcontrib>Sadjadpour, Hamid R.</creatorcontrib><creatorcontrib>Dowla, Farid U.</creatorcontrib><creatorcontrib>Nekoogar, Faranak</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xiangjian</au><au>Sadjadpour, Hamid R.</au><au>Dowla, Farid U.</au><au>Nekoogar, Faranak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>56226</spage><epage>56239</epage><pages>56226-56239</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless sensor networks (WSN), limited power availability with long service time requirements, and severe signal attenuation, error rates, and loss packets in harsh through-wall scenarios. The proposed system utilizes a low-power single input multiple output (SIMO) Ultra-Wideband (UWB) system with orthogonal frequency division multiplexing (OFDM), enhancing spectrum efficiency through frequency and spatial diversities. We introduce a modified water-filling algorithm, designed to optimally allocate power across subchannels based on varying channel conditions when total power budget is undefined. This algorithm specifically targets on achieving necessary system throughput, which is a critical parameter in communication designs. Our simulation results demonstrate significant energy savings and reductions in bit error rate and outage probability, offering a robust solution for nuclear safety. Furthermore, we emphasize the gap in the existing literature regarding channel models for harsh though-wall environments by developing a straightforward and comprehensive channel model using ray-tracing techniques and Friis' transmission equations. This model's accuracy is validated through a comparison of calculated results against experimentally measured results, verifying its effectiveness and applicability in different through-wall communication scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3389681</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2215-4759</orcidid><orcidid>https://orcid.org/0000-0003-4279-4745</orcidid><orcidid>https://orcid.org/0000-0003-1360-9918</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.56226-56239
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10501943
source IEEE Open Access Journals
subjects Algorithms
Bit error rate
Channel modeling
Channel models
Communication systems
Communications systems
Design
harsh through-wall environments
Mathematical models
Model accuracy
Monitoring
Nuclear energy
nuclear monitoring systems
Nuclear safety
OFDM
Optimization
Orthogonal Frequency Division Multiplexing
Power control
Propagation losses
Ray tracing
Robustness (mathematics)
Signal to noise ratio
SIMO
Ultra wideband technology
Ultrawideband
UWB
water-filling
Wireless sensor networks
title Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Communication%20System%20With%20Power%20Control%20and%20Ultra-Wideband%20Propagation%20Channel%20Model%20Designs%20for%20Monitoring%20Harsh%20Through-Wall%20Environments&rft.jtitle=IEEE%20access&rft.au=Gao,%20Xiangjian&rft.date=2024&rft.volume=12&rft.spage=56226&rft.epage=56239&rft.pages=56226-56239&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3389681&rft_dat=%3Cproquest_ieee_%3E3046910784%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046910784&rft_id=info:pmid/&rft_ieee_id=10501943&rfr_iscdi=true