Loading…
Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments
This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless senso...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.56226-56239 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033 |
container_end_page | 56239 |
container_issue | |
container_start_page | 56226 |
container_title | IEEE access |
container_volume | 12 |
creator | Gao, Xiangjian Sadjadpour, Hamid R. Dowla, Farid U. Nekoogar, Faranak |
description | This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless sensor networks (WSN), limited power availability with long service time requirements, and severe signal attenuation, error rates, and loss packets in harsh through-wall scenarios. The proposed system utilizes a low-power single input multiple output (SIMO) Ultra-Wideband (UWB) system with orthogonal frequency division multiplexing (OFDM), enhancing spectrum efficiency through frequency and spatial diversities. We introduce a modified water-filling algorithm, designed to optimally allocate power across subchannels based on varying channel conditions when total power budget is undefined. This algorithm specifically targets on achieving necessary system throughput, which is a critical parameter in communication designs. Our simulation results demonstrate significant energy savings and reductions in bit error rate and outage probability, offering a robust solution for nuclear safety. Furthermore, we emphasize the gap in the existing literature regarding channel models for harsh though-wall environments by developing a straightforward and comprehensive channel model using ray-tracing techniques and Friis' transmission equations. This model's accuracy is validated through a comparison of calculated results against experimentally measured results, verifying its effectiveness and applicability in different through-wall communication scenarios. |
doi_str_mv | 10.1109/ACCESS.2024.3389681 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10501943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10501943</ieee_id><doaj_id>oai_doaj_org_article_27d065fcf25b4d3baa78d2fc5fbca5db</doaj_id><sourcerecordid>3046910784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033</originalsourceid><addsrcrecordid>eNpNUdtu1DAQjRBIVKVfAA-WeM7iS5zYj1VYaKWiVtpW-2g5viReJfZie0H9Dn4YL6lQ_TCeOZ5zZuRTVR8R3CAE-Zfrvt_udhsMcbMhhPGWoTfVBUYtrwkl7dtX-fvqKqUDLIcViHYX1Z_7Y3aLnEEfluXknZLZBQ92zymbBexdnsBD-G1iefc5hhlIr8HTnKOs906b4Vw-xHCU40rsJ-m9mcGPoEv8apIbfQI2xIJ4l0N0fgQ3MqYJPE4xnMap3st5Blv_y8XgF-Nz-lC9s3JO5urlvqyevm0f-5v67v77bX99VytCea4VbaiitkWt5Ah3eNDa2pZhbQc9GDiopms1bCHlXDKJUWcsbSxViDEOFSTksrpddXWQB3GM5R_iswjSiX9AiKOQMTs1G4G7okStspgOjSaDlB3T2Jbxg5JUD0Xr86p1jOHnyaQsDuEUfVlfENi0HMGONaWLrF0qhpSisf-nIijOZorVTHE2U7yYWVifVpYzxrxiUIh4Q8hfUXOekQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046910784</pqid></control><display><type>article</type><title>Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments</title><source>IEEE Open Access Journals</source><creator>Gao, Xiangjian ; Sadjadpour, Hamid R. ; Dowla, Farid U. ; Nekoogar, Faranak</creator><creatorcontrib>Gao, Xiangjian ; Sadjadpour, Hamid R. ; Dowla, Farid U. ; Nekoogar, Faranak</creatorcontrib><description>This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless sensor networks (WSN), limited power availability with long service time requirements, and severe signal attenuation, error rates, and loss packets in harsh through-wall scenarios. The proposed system utilizes a low-power single input multiple output (SIMO) Ultra-Wideband (UWB) system with orthogonal frequency division multiplexing (OFDM), enhancing spectrum efficiency through frequency and spatial diversities. We introduce a modified water-filling algorithm, designed to optimally allocate power across subchannels based on varying channel conditions when total power budget is undefined. This algorithm specifically targets on achieving necessary system throughput, which is a critical parameter in communication designs. Our simulation results demonstrate significant energy savings and reductions in bit error rate and outage probability, offering a robust solution for nuclear safety. Furthermore, we emphasize the gap in the existing literature regarding channel models for harsh though-wall environments by developing a straightforward and comprehensive channel model using ray-tracing techniques and Friis' transmission equations. This model's accuracy is validated through a comparison of calculated results against experimentally measured results, verifying its effectiveness and applicability in different through-wall communication scenarios.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3389681</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bit error rate ; Channel modeling ; Channel models ; Communication systems ; Communications systems ; Design ; harsh through-wall environments ; Mathematical models ; Model accuracy ; Monitoring ; Nuclear energy ; nuclear monitoring systems ; Nuclear safety ; OFDM ; Optimization ; Orthogonal Frequency Division Multiplexing ; Power control ; Propagation losses ; Ray tracing ; Robustness (mathematics) ; Signal to noise ratio ; SIMO ; Ultra wideband technology ; Ultrawideband ; UWB ; water-filling ; Wireless sensor networks</subject><ispartof>IEEE access, 2024, Vol.12, p.56226-56239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033</cites><orcidid>0000-0003-2215-4759 ; 0000-0003-4279-4745 ; 0000-0003-1360-9918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10501943$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Gao, Xiangjian</creatorcontrib><creatorcontrib>Sadjadpour, Hamid R.</creatorcontrib><creatorcontrib>Dowla, Farid U.</creatorcontrib><creatorcontrib>Nekoogar, Faranak</creatorcontrib><title>Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless sensor networks (WSN), limited power availability with long service time requirements, and severe signal attenuation, error rates, and loss packets in harsh through-wall scenarios. The proposed system utilizes a low-power single input multiple output (SIMO) Ultra-Wideband (UWB) system with orthogonal frequency division multiplexing (OFDM), enhancing spectrum efficiency through frequency and spatial diversities. We introduce a modified water-filling algorithm, designed to optimally allocate power across subchannels based on varying channel conditions when total power budget is undefined. This algorithm specifically targets on achieving necessary system throughput, which is a critical parameter in communication designs. Our simulation results demonstrate significant energy savings and reductions in bit error rate and outage probability, offering a robust solution for nuclear safety. Furthermore, we emphasize the gap in the existing literature regarding channel models for harsh though-wall environments by developing a straightforward and comprehensive channel model using ray-tracing techniques and Friis' transmission equations. This model's accuracy is validated through a comparison of calculated results against experimentally measured results, verifying its effectiveness and applicability in different through-wall communication scenarios.</description><subject>Algorithms</subject><subject>Bit error rate</subject><subject>Channel modeling</subject><subject>Channel models</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Design</subject><subject>harsh through-wall environments</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Monitoring</subject><subject>Nuclear energy</subject><subject>nuclear monitoring systems</subject><subject>Nuclear safety</subject><subject>OFDM</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Power control</subject><subject>Propagation losses</subject><subject>Ray tracing</subject><subject>Robustness (mathematics)</subject><subject>Signal to noise ratio</subject><subject>SIMO</subject><subject>Ultra wideband technology</subject><subject>Ultrawideband</subject><subject>UWB</subject><subject>water-filling</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtu1DAQjRBIVKVfAA-WeM7iS5zYj1VYaKWiVtpW-2g5viReJfZie0H9Dn4YL6lQ_TCeOZ5zZuRTVR8R3CAE-Zfrvt_udhsMcbMhhPGWoTfVBUYtrwkl7dtX-fvqKqUDLIcViHYX1Z_7Y3aLnEEfluXknZLZBQ92zymbBexdnsBD-G1iefc5hhlIr8HTnKOs906b4Vw-xHCU40rsJ-m9mcGPoEv8apIbfQI2xIJ4l0N0fgQ3MqYJPE4xnMap3st5Blv_y8XgF-Nz-lC9s3JO5urlvqyevm0f-5v67v77bX99VytCea4VbaiitkWt5Ah3eNDa2pZhbQc9GDiopms1bCHlXDKJUWcsbSxViDEOFSTksrpddXWQB3GM5R_iswjSiX9AiKOQMTs1G4G7okStspgOjSaDlB3T2Jbxg5JUD0Xr86p1jOHnyaQsDuEUfVlfENi0HMGONaWLrF0qhpSisf-nIijOZorVTHE2U7yYWVifVpYzxrxiUIh4Q8hfUXOekQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Xiangjian</creator><creator>Sadjadpour, Hamid R.</creator><creator>Dowla, Farid U.</creator><creator>Nekoogar, Faranak</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2215-4759</orcidid><orcidid>https://orcid.org/0000-0003-4279-4745</orcidid><orcidid>https://orcid.org/0000-0003-1360-9918</orcidid></search><sort><creationdate>2024</creationdate><title>Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments</title><author>Gao, Xiangjian ; Sadjadpour, Hamid R. ; Dowla, Farid U. ; Nekoogar, Faranak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bit error rate</topic><topic>Channel modeling</topic><topic>Channel models</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Design</topic><topic>harsh through-wall environments</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Monitoring</topic><topic>Nuclear energy</topic><topic>nuclear monitoring systems</topic><topic>Nuclear safety</topic><topic>OFDM</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Power control</topic><topic>Propagation losses</topic><topic>Ray tracing</topic><topic>Robustness (mathematics)</topic><topic>Signal to noise ratio</topic><topic>SIMO</topic><topic>Ultra wideband technology</topic><topic>Ultrawideband</topic><topic>UWB</topic><topic>water-filling</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xiangjian</creatorcontrib><creatorcontrib>Sadjadpour, Hamid R.</creatorcontrib><creatorcontrib>Dowla, Farid U.</creatorcontrib><creatorcontrib>Nekoogar, Faranak</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xiangjian</au><au>Sadjadpour, Hamid R.</au><au>Dowla, Farid U.</au><au>Nekoogar, Faranak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>56226</spage><epage>56239</epage><pages>56226-56239</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study presents a novel approach to design an optimal and energy-efficient communication system tailored for wireless monitoring system in nuclear power facilities. It addresses the unique challenges of such environments, including high throughput demands for the size expansion of wireless sensor networks (WSN), limited power availability with long service time requirements, and severe signal attenuation, error rates, and loss packets in harsh through-wall scenarios. The proposed system utilizes a low-power single input multiple output (SIMO) Ultra-Wideband (UWB) system with orthogonal frequency division multiplexing (OFDM), enhancing spectrum efficiency through frequency and spatial diversities. We introduce a modified water-filling algorithm, designed to optimally allocate power across subchannels based on varying channel conditions when total power budget is undefined. This algorithm specifically targets on achieving necessary system throughput, which is a critical parameter in communication designs. Our simulation results demonstrate significant energy savings and reductions in bit error rate and outage probability, offering a robust solution for nuclear safety. Furthermore, we emphasize the gap in the existing literature regarding channel models for harsh though-wall environments by developing a straightforward and comprehensive channel model using ray-tracing techniques and Friis' transmission equations. This model's accuracy is validated through a comparison of calculated results against experimentally measured results, verifying its effectiveness and applicability in different through-wall communication scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3389681</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2215-4759</orcidid><orcidid>https://orcid.org/0000-0003-4279-4745</orcidid><orcidid>https://orcid.org/0000-0003-1360-9918</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.56226-56239 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10501943 |
source | IEEE Open Access Journals |
subjects | Algorithms Bit error rate Channel modeling Channel models Communication systems Communications systems Design harsh through-wall environments Mathematical models Model accuracy Monitoring Nuclear energy nuclear monitoring systems Nuclear safety OFDM Optimization Orthogonal Frequency Division Multiplexing Power control Propagation losses Ray tracing Robustness (mathematics) Signal to noise ratio SIMO Ultra wideband technology Ultrawideband UWB water-filling Wireless sensor networks |
title | Optimal Communication System With Power Control and Ultra-Wideband Propagation Channel Model Designs for Monitoring Harsh Through-Wall Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Communication%20System%20With%20Power%20Control%20and%20Ultra-Wideband%20Propagation%20Channel%20Model%20Designs%20for%20Monitoring%20Harsh%20Through-Wall%20Environments&rft.jtitle=IEEE%20access&rft.au=Gao,%20Xiangjian&rft.date=2024&rft.volume=12&rft.spage=56226&rft.epage=56239&rft.pages=56226-56239&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3389681&rft_dat=%3Cproquest_ieee_%3E3046910784%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-c545c5f616a91272bddff682dfbdbe0bc476d060599a8a217ef54f5c18890c033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046910784&rft_id=info:pmid/&rft_ieee_id=10501943&rfr_iscdi=true |