Loading…
Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging
Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep stagin...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1668-1678 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3 |
container_end_page | 1678 |
container_issue | |
container_start_page | 1668 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Zhou, Yangxuan Zhao, Sha Wang, Jiquan Jiang, Haiteng Yu, Zhenghe Li, Shijian Li, Tao Pan, Gang |
description | Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG. |
doi_str_mv | 10.1109/TNSRE.2024.3389077 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10504925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504925</ieee_id><doaj_id>oai_doaj_org_article_51f1cdb6fd8c42a2aab90ec21f582d57</doaj_id><sourcerecordid>3077161952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3</originalsourceid><addsrcrecordid>eNpdkUtrFEEURhsxmBj9AyJS4MZNT269q5YhjDGYB6QjLot69VhD99TYj8X8e2syYxBXVXyc-3Evp6o-YFhgDPri6b55XC4IELagVGmQ8lV1hjlXNRAMr_d_ympGCZxWb8dxDYCl4PJNdUqVoJwqdlZ9b1K_7VK7S5sVupu7KfU52A79TNMv1JSwi2j5cI3u9mmadqjNA7qcp9zbKXnUdDFuUTPZVUHfVSet7cb4_vieVz--Lp-uvtW3D9c3V5e3tWeYTjXD3IngWg1CRC0DjxLr1svgKFjuRdDMMUa4xpRrrkB5H30AUNQ5YWWk59XNoTdkuzbbIfV22Jlsk3kO8rAydijbddFw3GIfnGiD8oxYYq3TED3BLVckcFm6vhy6tkP-PcdxMn0afew6u4l5Hg0FRkGCZKKgn_9D13keNuXSQkmJBdacFIocKD_kcRxi-7IgBrPXZp61mb02c9RWhj4dq2fXx_Ay8tdTAT4egBRj_KeRA9OE0z_TxJqV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077161952</pqid></control><display><type>article</type><title>Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging</title><source>Alma/SFX Local Collection</source><creator>Zhou, Yangxuan ; Zhao, Sha ; Wang, Jiquan ; Jiang, Haiteng ; Yu, Zhenghe ; Li, Shijian ; Li, Tao ; Pan, Gang</creator><creatorcontrib>Zhou, Yangxuan ; Zhao, Sha ; Wang, Jiquan ; Jiang, Haiteng ; Yu, Zhenghe ; Li, Shijian ; Li, Tao ; Pan, Gang</creatorcontrib><description>Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3389077</identifier><identifier>PMID: 38635384</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Brain modeling ; Correlation ; Datasets ; EEG ; Electroencephalography ; Electroencephalography - methods ; Electrooculography ; Electrooculography - methods ; Feature extraction ; Female ; Humans ; Male ; Multi modalities ; Noise sensitivity ; Polysomnography - methods ; PSG recordings ; Recording ; Sleep ; Sleep Stages - physiology ; sleep staging ; Young Adult</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1668-1678</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3</cites><orcidid>0000-0003-4628-5198 ; 0000-0002-1621-1836 ; 0000-0002-4049-6181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38635384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yangxuan</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Jiang, Haiteng</creatorcontrib><creatorcontrib>Yu, Zhenghe</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><title>Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain modeling</subject><subject>Correlation</subject><subject>Datasets</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electrooculography</subject><subject>Electrooculography - methods</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Multi modalities</subject><subject>Noise sensitivity</subject><subject>Polysomnography - methods</subject><subject>PSG recordings</subject><subject>Recording</subject><subject>Sleep</subject><subject>Sleep Stages - physiology</subject><subject>sleep staging</subject><subject>Young Adult</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtrFEEURhsxmBj9AyJS4MZNT269q5YhjDGYB6QjLot69VhD99TYj8X8e2syYxBXVXyc-3Evp6o-YFhgDPri6b55XC4IELagVGmQ8lV1hjlXNRAMr_d_ympGCZxWb8dxDYCl4PJNdUqVoJwqdlZ9b1K_7VK7S5sVupu7KfU52A79TNMv1JSwi2j5cI3u9mmadqjNA7qcp9zbKXnUdDFuUTPZVUHfVSet7cb4_vieVz--Lp-uvtW3D9c3V5e3tWeYTjXD3IngWg1CRC0DjxLr1svgKFjuRdDMMUa4xpRrrkB5H30AUNQ5YWWk59XNoTdkuzbbIfV22Jlsk3kO8rAydijbddFw3GIfnGiD8oxYYq3TED3BLVckcFm6vhy6tkP-PcdxMn0afew6u4l5Hg0FRkGCZKKgn_9D13keNuXSQkmJBdacFIocKD_kcRxi-7IgBrPXZp61mb02c9RWhj4dq2fXx_Ay8tdTAT4egBRj_KeRA9OE0z_TxJqV</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Yangxuan</creator><creator>Zhao, Sha</creator><creator>Wang, Jiquan</creator><creator>Jiang, Haiteng</creator><creator>Yu, Zhenghe</creator><creator>Li, Shijian</creator><creator>Li, Tao</creator><creator>Pan, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-1621-1836</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid></search><sort><creationdate>2024</creationdate><title>Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging</title><author>Zhou, Yangxuan ; Zhao, Sha ; Wang, Jiquan ; Jiang, Haiteng ; Yu, Zhenghe ; Li, Shijian ; Li, Tao ; Pan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain modeling</topic><topic>Correlation</topic><topic>Datasets</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electrooculography</topic><topic>Electrooculography - methods</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Multi modalities</topic><topic>Noise sensitivity</topic><topic>Polysomnography - methods</topic><topic>PSG recordings</topic><topic>Recording</topic><topic>Sleep</topic><topic>Sleep Stages - physiology</topic><topic>sleep staging</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yangxuan</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Jiang, Haiteng</creatorcontrib><creatorcontrib>Yu, Zhenghe</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yangxuan</au><au>Zhao, Sha</au><au>Wang, Jiquan</au><au>Jiang, Haiteng</au><au>Yu, Zhenghe</au><au>Li, Shijian</au><au>Li, Tao</au><au>Pan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1668</spage><epage>1678</epage><pages>1668-1678</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38635384</pmid><doi>10.1109/TNSRE.2024.3389077</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-1621-1836</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1668-1678 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_ieee_primary_10504925 |
source | Alma/SFX Local Collection |
subjects | Adult Algorithms Brain modeling Correlation Datasets EEG Electroencephalography Electroencephalography - methods Electrooculography Electrooculography - methods Feature extraction Female Humans Male Multi modalities Noise sensitivity Polysomnography - methods PSG recordings Recording Sleep Sleep Stages - physiology sleep staging Young Adult |
title | Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplifying%20Multimodal%20With%20Single%20EOG%20Modality%20for%20Automatic%20Sleep%20Staging&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Zhou,%20Yangxuan&rft.date=2024&rft.volume=32&rft.spage=1668&rft.epage=1678&rft.pages=1668-1678&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3389077&rft_dat=%3Cproquest_ieee_%3E3077161952%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3077161952&rft_id=info:pmid/38635384&rft_ieee_id=10504925&rfr_iscdi=true |