Loading…

Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging

Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep stagin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1668-1678
Main Authors: Zhou, Yangxuan, Zhao, Sha, Wang, Jiquan, Jiang, Haiteng, Yu, Zhenghe, Li, Shijian, Li, Tao, Pan, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3
container_end_page 1678
container_issue
container_start_page 1668
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Zhou, Yangxuan
Zhao, Sha
Wang, Jiquan
Jiang, Haiteng
Yu, Zhenghe
Li, Shijian
Li, Tao
Pan, Gang
description Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.
doi_str_mv 10.1109/TNSRE.2024.3389077
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10504925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504925</ieee_id><doaj_id>oai_doaj_org_article_51f1cdb6fd8c42a2aab90ec21f582d57</doaj_id><sourcerecordid>3077161952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3</originalsourceid><addsrcrecordid>eNpdkUtrFEEURhsxmBj9AyJS4MZNT269q5YhjDGYB6QjLot69VhD99TYj8X8e2syYxBXVXyc-3Evp6o-YFhgDPri6b55XC4IELagVGmQ8lV1hjlXNRAMr_d_ympGCZxWb8dxDYCl4PJNdUqVoJwqdlZ9b1K_7VK7S5sVupu7KfU52A79TNMv1JSwi2j5cI3u9mmadqjNA7qcp9zbKXnUdDFuUTPZVUHfVSet7cb4_vieVz--Lp-uvtW3D9c3V5e3tWeYTjXD3IngWg1CRC0DjxLr1svgKFjuRdDMMUa4xpRrrkB5H30AUNQ5YWWk59XNoTdkuzbbIfV22Jlsk3kO8rAydijbddFw3GIfnGiD8oxYYq3TED3BLVckcFm6vhy6tkP-PcdxMn0afew6u4l5Hg0FRkGCZKKgn_9D13keNuXSQkmJBdacFIocKD_kcRxi-7IgBrPXZp61mb02c9RWhj4dq2fXx_Ay8tdTAT4egBRj_KeRA9OE0z_TxJqV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077161952</pqid></control><display><type>article</type><title>Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging</title><source>Alma/SFX Local Collection</source><creator>Zhou, Yangxuan ; Zhao, Sha ; Wang, Jiquan ; Jiang, Haiteng ; Yu, Zhenghe ; Li, Shijian ; Li, Tao ; Pan, Gang</creator><creatorcontrib>Zhou, Yangxuan ; Zhao, Sha ; Wang, Jiquan ; Jiang, Haiteng ; Yu, Zhenghe ; Li, Shijian ; Li, Tao ; Pan, Gang</creatorcontrib><description>Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3389077</identifier><identifier>PMID: 38635384</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Brain modeling ; Correlation ; Datasets ; EEG ; Electroencephalography ; Electroencephalography - methods ; Electrooculography ; Electrooculography - methods ; Feature extraction ; Female ; Humans ; Male ; Multi modalities ; Noise sensitivity ; Polysomnography - methods ; PSG recordings ; Recording ; Sleep ; Sleep Stages - physiology ; sleep staging ; Young Adult</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1668-1678</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3</cites><orcidid>0000-0003-4628-5198 ; 0000-0002-1621-1836 ; 0000-0002-4049-6181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38635384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yangxuan</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Jiang, Haiteng</creatorcontrib><creatorcontrib>Yu, Zhenghe</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><title>Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain modeling</subject><subject>Correlation</subject><subject>Datasets</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electrooculography</subject><subject>Electrooculography - methods</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Multi modalities</subject><subject>Noise sensitivity</subject><subject>Polysomnography - methods</subject><subject>PSG recordings</subject><subject>Recording</subject><subject>Sleep</subject><subject>Sleep Stages - physiology</subject><subject>sleep staging</subject><subject>Young Adult</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtrFEEURhsxmBj9AyJS4MZNT269q5YhjDGYB6QjLot69VhD99TYj8X8e2syYxBXVXyc-3Evp6o-YFhgDPri6b55XC4IELagVGmQ8lV1hjlXNRAMr_d_ympGCZxWb8dxDYCl4PJNdUqVoJwqdlZ9b1K_7VK7S5sVupu7KfU52A79TNMv1JSwi2j5cI3u9mmadqjNA7qcp9zbKXnUdDFuUTPZVUHfVSet7cb4_vieVz--Lp-uvtW3D9c3V5e3tWeYTjXD3IngWg1CRC0DjxLr1svgKFjuRdDMMUa4xpRrrkB5H30AUNQ5YWWk59XNoTdkuzbbIfV22Jlsk3kO8rAydijbddFw3GIfnGiD8oxYYq3TED3BLVckcFm6vhy6tkP-PcdxMn0afew6u4l5Hg0FRkGCZKKgn_9D13keNuXSQkmJBdacFIocKD_kcRxi-7IgBrPXZp61mb02c9RWhj4dq2fXx_Ay8tdTAT4egBRj_KeRA9OE0z_TxJqV</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Yangxuan</creator><creator>Zhao, Sha</creator><creator>Wang, Jiquan</creator><creator>Jiang, Haiteng</creator><creator>Yu, Zhenghe</creator><creator>Li, Shijian</creator><creator>Li, Tao</creator><creator>Pan, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-1621-1836</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid></search><sort><creationdate>2024</creationdate><title>Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging</title><author>Zhou, Yangxuan ; Zhao, Sha ; Wang, Jiquan ; Jiang, Haiteng ; Yu, Zhenghe ; Li, Shijian ; Li, Tao ; Pan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain modeling</topic><topic>Correlation</topic><topic>Datasets</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electrooculography</topic><topic>Electrooculography - methods</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Multi modalities</topic><topic>Noise sensitivity</topic><topic>Polysomnography - methods</topic><topic>PSG recordings</topic><topic>Recording</topic><topic>Sleep</topic><topic>Sleep Stages - physiology</topic><topic>sleep staging</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yangxuan</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Jiang, Haiteng</creatorcontrib><creatorcontrib>Yu, Zhenghe</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yangxuan</au><au>Zhao, Sha</au><au>Wang, Jiquan</au><au>Jiang, Haiteng</au><au>Yu, Zhenghe</au><au>Li, Shijian</au><au>Li, Tao</au><au>Pan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1668</spage><epage>1678</epage><pages>1668-1678</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Polysomnography (PSG) recordings have been widely used for sleep staging in clinics, containing multiple modality signals (i.e., EEG and EOG). Recently, many studies have combined EEG and EOG modalities for sleep staging, since they are the most and the second most powerful modality for sleep staging among PSG recordings, respectively. However, EEG is complex to collect and sensitive to environment noise or other body activities, imbedding its use in clinical practice. Comparatively, EOG is much more easily to be obtained. In order to make full use of the powerful ability of EEG and the easy collection of EOG, we propose a novel framework to simplify multimodal sleep staging with a single EOG modality. It still performs well with only EOG modality in the absence of the EEG. Specifically, we first model the correlation between EEG and EOG, and then based on the correlation we generate multimodal features with time and frequency guided generators by adopting the idea of generative adversarial learning. We collected a real-world sleep dataset containing 67 recordings and used other four public datasets for evaluation. Compared with other existing sleep staging methods, our framework performs the best when solely using the EOG modality. Moreover, under our framework, EOG provides a comparable performance to EEG.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38635384</pmid><doi>10.1109/TNSRE.2024.3389077</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-1621-1836</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1668-1678
issn 1534-4320
1558-0210
language eng
recordid cdi_ieee_primary_10504925
source Alma/SFX Local Collection
subjects Adult
Algorithms
Brain modeling
Correlation
Datasets
EEG
Electroencephalography
Electroencephalography - methods
Electrooculography
Electrooculography - methods
Feature extraction
Female
Humans
Male
Multi modalities
Noise sensitivity
Polysomnography - methods
PSG recordings
Recording
Sleep
Sleep Stages - physiology
sleep staging
Young Adult
title Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplifying%20Multimodal%20With%20Single%20EOG%20Modality%20for%20Automatic%20Sleep%20Staging&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Zhou,%20Yangxuan&rft.date=2024&rft.volume=32&rft.spage=1668&rft.epage=1678&rft.pages=1668-1678&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3389077&rft_dat=%3Cproquest_ieee_%3E3077161952%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-415b6dbf9066e97d5e719fc7db30a5c6d94b4425913595808ccecd0083bb6a7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3077161952&rft_id=info:pmid/38635384&rft_ieee_id=10504925&rfr_iscdi=true