Loading…

Location and User Association Optimization in Multiple Radio Access UAV-Assisted Heterogeneous IoT Networks

Recently, the huge growth in multimedia demand derived from smart devices and Internet of Things (IoT) development requires efficient heterogeneous networks with high data rates. To fulfill these requirements, the exploitation of Unmanned Aerial Vehicles (UAVs) enabled with multiple radio access for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.59273-59288
Main Authors: Anany, Mohamed G., Elmesalawy, Mahmoud M., Ibrahim, Ibrahim I., El-Haleem, Ahmed M. Abd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-ade92372f858bc852453e384987391609298b466ab462ecac2b229f353a873fa3
container_end_page 59288
container_issue
container_start_page 59273
container_title IEEE access
container_volume 12
creator Anany, Mohamed G.
Elmesalawy, Mahmoud M.
Ibrahim, Ibrahim I.
El-Haleem, Ahmed M. Abd
description Recently, the huge growth in multimedia demand derived from smart devices and Internet of Things (IoT) development requires efficient heterogeneous networks with high data rates. To fulfill these requirements, the exploitation of Unmanned Aerial Vehicles (UAVs) enabled with multiple radio access for providing efficient connectivity should be considered, since it offers flexibility, ease of deployment, and on-demand service for wireless devices. In this paper, the idea of deploying Multiple Radio Access Technologies (Multi-RAT) base stations on a UAV is proposed, in order to utilize the unlicensed spectrum. The problem of optimizing the Multi-RAT UAV's location along with the wireless devices' association to maximize the total system throughput considering a heterogeneous LTE and WLAN ground network is investigated. To solve this problem, we propose a novel framework based on reinforcement learning and regret matching algorithms, such that the Q-learning algorithm is used to find the Multi-RAT UAV's optimum location, while regret matching is used to solve the optimum users' association. Moreover, a K-means clustering algorithm is adopted as an initialization phase to speed up the convergence of the proposed solution. Simulation results show the significance of the proposed idea of deploying Multi-RAT base stations on a UAV. Further, the performance analysis shows the effectiveness of the proposed framework by applying K-means as an initialization phase.
doi_str_mv 10.1109/ACCESS.2024.3392597
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10506907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10506907</ieee_id><doaj_id>oai_doaj_org_article_42930137d54346899202742ee617be08</doaj_id><sourcerecordid>3050304179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ade92372f858bc852453e384987391609298b466ab462ecac2b229f353a873fa3</originalsourceid><addsrcrecordid>eNpNUcFuGyEUXEWt1CjJF7QHpJzXAR4scFxZaWPJaaQm7hVh9m2E4ywuYFXt15dkoyoc4DGaGXhvmuYzowvGqLnql8vr-_sFp1wsAAyXRp00p5x1pgUJ3Yd39afmIucdrUtXSKrT5mkdvSshTsRNA9lkTKTPOfowg3eHEp7D3_kSJnJ73Jdw2CP54YYQSe895kw2_c-2qkIuOJAbLJjiI04Yj5ms4gP5juV3TE_5vPk4un3Gi7fzrNl8vX5Y3rTru2-rZb9uPUhTWjeg4aD4qKXeei25kICghdEKDOuo4UZvRde5unH0zvMt52as_bnKGB2cNavZd4huZw8pPLv0x0YX7CsQ06N1qQS_Ryu4AcpADVKA6LQxdYpKcMSOqS1SXb0uZ69Dir-OmIvdxWOa6vctUEmBCqZMZcHM8inmnHD8_yqj9iUkO4dkX0KybyFV1ZdZFRDxnULSzlAF_wAlQ4vF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050304179</pqid></control><display><type>article</type><title>Location and User Association Optimization in Multiple Radio Access UAV-Assisted Heterogeneous IoT Networks</title><source>IEEE Xplore Open Access Journals</source><creator>Anany, Mohamed G. ; Elmesalawy, Mahmoud M. ; Ibrahim, Ibrahim I. ; El-Haleem, Ahmed M. Abd</creator><creatorcontrib>Anany, Mohamed G. ; Elmesalawy, Mahmoud M. ; Ibrahim, Ibrahim I. ; El-Haleem, Ahmed M. Abd</creatorcontrib><description>Recently, the huge growth in multimedia demand derived from smart devices and Internet of Things (IoT) development requires efficient heterogeneous networks with high data rates. To fulfill these requirements, the exploitation of Unmanned Aerial Vehicles (UAVs) enabled with multiple radio access for providing efficient connectivity should be considered, since it offers flexibility, ease of deployment, and on-demand service for wireless devices. In this paper, the idea of deploying Multiple Radio Access Technologies (Multi-RAT) base stations on a UAV is proposed, in order to utilize the unlicensed spectrum. The problem of optimizing the Multi-RAT UAV's location along with the wireless devices' association to maximize the total system throughput considering a heterogeneous LTE and WLAN ground network is investigated. To solve this problem, we propose a novel framework based on reinforcement learning and regret matching algorithms, such that the Q-learning algorithm is used to find the Multi-RAT UAV's optimum location, while regret matching is used to solve the optimum users' association. Moreover, a K-means clustering algorithm is adopted as an initialization phase to speed up the convergence of the proposed solution. Simulation results show the significance of the proposed idea of deploying Multi-RAT base stations on a UAV. Further, the performance analysis shows the effectiveness of the proposed framework by applying K-means as an initialization phase.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3392597</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Base stations ; Cluster analysis ; Clustering ; HetNet ; Internet of Things ; IoT ; Long Term Evolution ; Machine learning ; Matching ; multi-RAT ; Multimedia ; Optimization ; Radio equipment ; Reinforcement learning ; Throughput ; UAV ; Unmanned aerial vehicles ; Vector quantization ; Wireless communication ; Wireless communications ; Wireless fidelity</subject><ispartof>IEEE access, 2024, Vol.12, p.59273-59288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-ade92372f858bc852453e384987391609298b466ab462ecac2b229f353a873fa3</cites><orcidid>0000-0002-6969-5627 ; 0000-0001-5707-6610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10506907$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Anany, Mohamed G.</creatorcontrib><creatorcontrib>Elmesalawy, Mahmoud M.</creatorcontrib><creatorcontrib>Ibrahim, Ibrahim I.</creatorcontrib><creatorcontrib>El-Haleem, Ahmed M. Abd</creatorcontrib><title>Location and User Association Optimization in Multiple Radio Access UAV-Assisted Heterogeneous IoT Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recently, the huge growth in multimedia demand derived from smart devices and Internet of Things (IoT) development requires efficient heterogeneous networks with high data rates. To fulfill these requirements, the exploitation of Unmanned Aerial Vehicles (UAVs) enabled with multiple radio access for providing efficient connectivity should be considered, since it offers flexibility, ease of deployment, and on-demand service for wireless devices. In this paper, the idea of deploying Multiple Radio Access Technologies (Multi-RAT) base stations on a UAV is proposed, in order to utilize the unlicensed spectrum. The problem of optimizing the Multi-RAT UAV's location along with the wireless devices' association to maximize the total system throughput considering a heterogeneous LTE and WLAN ground network is investigated. To solve this problem, we propose a novel framework based on reinforcement learning and regret matching algorithms, such that the Q-learning algorithm is used to find the Multi-RAT UAV's optimum location, while regret matching is used to solve the optimum users' association. Moreover, a K-means clustering algorithm is adopted as an initialization phase to speed up the convergence of the proposed solution. Simulation results show the significance of the proposed idea of deploying Multi-RAT base stations on a UAV. Further, the performance analysis shows the effectiveness of the proposed framework by applying K-means as an initialization phase.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Base stations</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>HetNet</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Long Term Evolution</subject><subject>Machine learning</subject><subject>Matching</subject><subject>multi-RAT</subject><subject>Multimedia</subject><subject>Optimization</subject><subject>Radio equipment</subject><subject>Reinforcement learning</subject><subject>Throughput</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Vector quantization</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuGyEUXEWt1CjJF7QHpJzXAR4scFxZaWPJaaQm7hVh9m2E4ywuYFXt15dkoyoc4DGaGXhvmuYzowvGqLnql8vr-_sFp1wsAAyXRp00p5x1pgUJ3Yd39afmIucdrUtXSKrT5mkdvSshTsRNA9lkTKTPOfowg3eHEp7D3_kSJnJ73Jdw2CP54YYQSe895kw2_c-2qkIuOJAbLJjiI04Yj5ms4gP5juV3TE_5vPk4un3Gi7fzrNl8vX5Y3rTru2-rZb9uPUhTWjeg4aD4qKXeei25kICghdEKDOuo4UZvRde5unH0zvMt52as_bnKGB2cNavZd4huZw8pPLv0x0YX7CsQ06N1qQS_Ryu4AcpADVKA6LQxdYpKcMSOqS1SXb0uZ69Dir-OmIvdxWOa6vctUEmBCqZMZcHM8inmnHD8_yqj9iUkO4dkX0KybyFV1ZdZFRDxnULSzlAF_wAlQ4vF</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Anany, Mohamed G.</creator><creator>Elmesalawy, Mahmoud M.</creator><creator>Ibrahim, Ibrahim I.</creator><creator>El-Haleem, Ahmed M. Abd</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6969-5627</orcidid><orcidid>https://orcid.org/0000-0001-5707-6610</orcidid></search><sort><creationdate>2024</creationdate><title>Location and User Association Optimization in Multiple Radio Access UAV-Assisted Heterogeneous IoT Networks</title><author>Anany, Mohamed G. ; Elmesalawy, Mahmoud M. ; Ibrahim, Ibrahim I. ; El-Haleem, Ahmed M. Abd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ade92372f858bc852453e384987391609298b466ab462ecac2b229f353a873fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Base stations</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>HetNet</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Long Term Evolution</topic><topic>Machine learning</topic><topic>Matching</topic><topic>multi-RAT</topic><topic>Multimedia</topic><topic>Optimization</topic><topic>Radio equipment</topic><topic>Reinforcement learning</topic><topic>Throughput</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Vector quantization</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anany, Mohamed G.</creatorcontrib><creatorcontrib>Elmesalawy, Mahmoud M.</creatorcontrib><creatorcontrib>Ibrahim, Ibrahim I.</creatorcontrib><creatorcontrib>El-Haleem, Ahmed M. Abd</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anany, Mohamed G.</au><au>Elmesalawy, Mahmoud M.</au><au>Ibrahim, Ibrahim I.</au><au>El-Haleem, Ahmed M. Abd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location and User Association Optimization in Multiple Radio Access UAV-Assisted Heterogeneous IoT Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>59273</spage><epage>59288</epage><pages>59273-59288</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recently, the huge growth in multimedia demand derived from smart devices and Internet of Things (IoT) development requires efficient heterogeneous networks with high data rates. To fulfill these requirements, the exploitation of Unmanned Aerial Vehicles (UAVs) enabled with multiple radio access for providing efficient connectivity should be considered, since it offers flexibility, ease of deployment, and on-demand service for wireless devices. In this paper, the idea of deploying Multiple Radio Access Technologies (Multi-RAT) base stations on a UAV is proposed, in order to utilize the unlicensed spectrum. The problem of optimizing the Multi-RAT UAV's location along with the wireless devices' association to maximize the total system throughput considering a heterogeneous LTE and WLAN ground network is investigated. To solve this problem, we propose a novel framework based on reinforcement learning and regret matching algorithms, such that the Q-learning algorithm is used to find the Multi-RAT UAV's optimum location, while regret matching is used to solve the optimum users' association. Moreover, a K-means clustering algorithm is adopted as an initialization phase to speed up the convergence of the proposed solution. Simulation results show the significance of the proposed idea of deploying Multi-RAT base stations on a UAV. Further, the performance analysis shows the effectiveness of the proposed framework by applying K-means as an initialization phase.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3392597</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6969-5627</orcidid><orcidid>https://orcid.org/0000-0001-5707-6610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.59273-59288
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10506907
source IEEE Xplore Open Access Journals
subjects Algorithms
Autonomous aerial vehicles
Base stations
Cluster analysis
Clustering
HetNet
Internet of Things
IoT
Long Term Evolution
Machine learning
Matching
multi-RAT
Multimedia
Optimization
Radio equipment
Reinforcement learning
Throughput
UAV
Unmanned aerial vehicles
Vector quantization
Wireless communication
Wireless communications
Wireless fidelity
title Location and User Association Optimization in Multiple Radio Access UAV-Assisted Heterogeneous IoT Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20and%20User%20Association%20Optimization%20in%20Multiple%20Radio%20Access%20UAV-Assisted%20Heterogeneous%20IoT%20Networks&rft.jtitle=IEEE%20access&rft.au=Anany,%20Mohamed%20G.&rft.date=2024&rft.volume=12&rft.spage=59273&rft.epage=59288&rft.pages=59273-59288&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3392597&rft_dat=%3Cproquest_ieee_%3E3050304179%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-ade92372f858bc852453e384987391609298b466ab462ecac2b229f353a873fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3050304179&rft_id=info:pmid/&rft_ieee_id=10506907&rfr_iscdi=true