Loading…
Convolutional neural networks applied to classification of nanoparticles and nanotubes images
Nanotechnology is a promising research area involving the manipulation of nanomaterials and it has a wide variety of applications. To study these nanomaterials, researchers often use scanning electron microscopes (SEM) to generate and store images. However, different users tend to label the images u...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Quintero-Lopez, Luis A. Caro-Gutierrez, Jesus Gonzalez-Navarro, Felix F. Curiel-Alvarez, Mario A. Perez-Landeros, Oscar M. Radnev-Nedev, Nicola |
description | Nanotechnology is a promising research area involving the manipulation of nanomaterials and it has a wide variety of applications. To study these nanomaterials, researchers often use scanning electron microscopes (SEM) to generate and store images. However, different users tend to label the images using subjective criteria, which generates a large amount of data that is difficult to manage. To address this problem, we propose a convolutional neural network for image classification of nanomaterials. This work compares two convolutional neural networks, a custom network and a VGG16 network, and implements grid search to determine the best parameters for both networks. The results show that the custom network is more effective than VGG16 network, with a mean accuracy of 77.1% and F1 score of 76% versus 66.6% and 0.56%, respectively. Based on these results, we recommend using a custom network for image classification of nanomaterials with the following parameters: learning rate of 0.001, minibatch of 16, number of epochs 20, number of layers 3, and rmsprop optimizer. |
doi_str_mv | 10.1109/ENC60556.2023.10508707 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10508707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508707</ieee_id><sourcerecordid>10508707</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-155655d6f8f61a807f9814c154319ff100142e9ba491742eed9b8d5b611d774e3</originalsourceid><addsrcrecordid>eNo1kN1KxDAQhaMguK77BiJ9gdaZ_DaXUlZXWPRGL2VJm0SisSlNV_HtratenTmHjxnmEHKJUCGCvlrfNxKEkBUFyioEAbUCdURWWumaCWCaoZDHZEEZo6VQSE_JWc6vAFyAkAvy3KT-I8X9FFJvYtG7_XiQ6TONb7kwwxCDs8WUii6anIMPnflhi-SL3vRpMOMUuuhmtLeHZNq3swvv5sXlc3LiTcxu9adL8nSzfmw25fbh9q653paBAp9KnD8Qwkpfe4mmBuV1jbxDwRlq7xEAOXW6NVyjmidndVtb0UpEqxR3bEkufvcG59xuGOfr49fuvw72DWt1Vbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convolutional neural networks applied to classification of nanoparticles and nanotubes images</title><source>IEEE Xplore All Conference Series</source><creator>Quintero-Lopez, Luis A. ; Caro-Gutierrez, Jesus ; Gonzalez-Navarro, Felix F. ; Curiel-Alvarez, Mario A. ; Perez-Landeros, Oscar M. ; Radnev-Nedev, Nicola</creator><creatorcontrib>Quintero-Lopez, Luis A. ; Caro-Gutierrez, Jesus ; Gonzalez-Navarro, Felix F. ; Curiel-Alvarez, Mario A. ; Perez-Landeros, Oscar M. ; Radnev-Nedev, Nicola</creatorcontrib><description>Nanotechnology is a promising research area involving the manipulation of nanomaterials and it has a wide variety of applications. To study these nanomaterials, researchers often use scanning electron microscopes (SEM) to generate and store images. However, different users tend to label the images using subjective criteria, which generates a large amount of data that is difficult to manage. To address this problem, we propose a convolutional neural network for image classification of nanomaterials. This work compares two convolutional neural networks, a custom network and a VGG16 network, and implements grid search to determine the best parameters for both networks. The results show that the custom network is more effective than VGG16 network, with a mean accuracy of 77.1% and F1 score of 76% versus 66.6% and 0.56%, respectively. Based on these results, we recommend using a custom network for image classification of nanomaterials with the following parameters: learning rate of 0.001, minibatch of 16, number of epochs 20, number of layers 3, and rmsprop optimizer.</description><identifier>EISSN: 2332-5712</identifier><identifier>EISBN: 9798350393156</identifier><identifier>DOI: 10.1109/ENC60556.2023.10508707</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional neural networks ; Cross validation ; Deep learning ; Grid search ; Image classification ; Manuals ; Nanomaterials ; Nanoparticles ; Nanotubes ; Scanning electron microscopy ; Transfer learning</subject><ispartof>2023 Mexican International Conference on Computer Science (ENC), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quintero-Lopez, Luis A.</creatorcontrib><creatorcontrib>Caro-Gutierrez, Jesus</creatorcontrib><creatorcontrib>Gonzalez-Navarro, Felix F.</creatorcontrib><creatorcontrib>Curiel-Alvarez, Mario A.</creatorcontrib><creatorcontrib>Perez-Landeros, Oscar M.</creatorcontrib><creatorcontrib>Radnev-Nedev, Nicola</creatorcontrib><title>Convolutional neural networks applied to classification of nanoparticles and nanotubes images</title><title>2023 Mexican International Conference on Computer Science (ENC)</title><addtitle>ENC</addtitle><description>Nanotechnology is a promising research area involving the manipulation of nanomaterials and it has a wide variety of applications. To study these nanomaterials, researchers often use scanning electron microscopes (SEM) to generate and store images. However, different users tend to label the images using subjective criteria, which generates a large amount of data that is difficult to manage. To address this problem, we propose a convolutional neural network for image classification of nanomaterials. This work compares two convolutional neural networks, a custom network and a VGG16 network, and implements grid search to determine the best parameters for both networks. The results show that the custom network is more effective than VGG16 network, with a mean accuracy of 77.1% and F1 score of 76% versus 66.6% and 0.56%, respectively. Based on these results, we recommend using a custom network for image classification of nanomaterials with the following parameters: learning rate of 0.001, minibatch of 16, number of epochs 20, number of layers 3, and rmsprop optimizer.</description><subject>Convolutional neural networks</subject><subject>Cross validation</subject><subject>Deep learning</subject><subject>Grid search</subject><subject>Image classification</subject><subject>Manuals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Scanning electron microscopy</subject><subject>Transfer learning</subject><issn>2332-5712</issn><isbn>9798350393156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1KxDAQhaMguK77BiJ9gdaZ_DaXUlZXWPRGL2VJm0SisSlNV_HtratenTmHjxnmEHKJUCGCvlrfNxKEkBUFyioEAbUCdURWWumaCWCaoZDHZEEZo6VQSE_JWc6vAFyAkAvy3KT-I8X9FFJvYtG7_XiQ6TONb7kwwxCDs8WUii6anIMPnflhi-SL3vRpMOMUuuhmtLeHZNq3swvv5sXlc3LiTcxu9adL8nSzfmw25fbh9q653paBAp9KnD8Qwkpfe4mmBuV1jbxDwRlq7xEAOXW6NVyjmidndVtb0UpEqxR3bEkufvcG59xuGOfr49fuvw72DWt1Vbg</recordid><startdate>20230911</startdate><enddate>20230911</enddate><creator>Quintero-Lopez, Luis A.</creator><creator>Caro-Gutierrez, Jesus</creator><creator>Gonzalez-Navarro, Felix F.</creator><creator>Curiel-Alvarez, Mario A.</creator><creator>Perez-Landeros, Oscar M.</creator><creator>Radnev-Nedev, Nicola</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230911</creationdate><title>Convolutional neural networks applied to classification of nanoparticles and nanotubes images</title><author>Quintero-Lopez, Luis A. ; Caro-Gutierrez, Jesus ; Gonzalez-Navarro, Felix F. ; Curiel-Alvarez, Mario A. ; Perez-Landeros, Oscar M. ; Radnev-Nedev, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-155655d6f8f61a807f9814c154319ff100142e9ba491742eed9b8d5b611d774e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolutional neural networks</topic><topic>Cross validation</topic><topic>Deep learning</topic><topic>Grid search</topic><topic>Image classification</topic><topic>Manuals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Scanning electron microscopy</topic><topic>Transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Quintero-Lopez, Luis A.</creatorcontrib><creatorcontrib>Caro-Gutierrez, Jesus</creatorcontrib><creatorcontrib>Gonzalez-Navarro, Felix F.</creatorcontrib><creatorcontrib>Curiel-Alvarez, Mario A.</creatorcontrib><creatorcontrib>Perez-Landeros, Oscar M.</creatorcontrib><creatorcontrib>Radnev-Nedev, Nicola</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quintero-Lopez, Luis A.</au><au>Caro-Gutierrez, Jesus</au><au>Gonzalez-Navarro, Felix F.</au><au>Curiel-Alvarez, Mario A.</au><au>Perez-Landeros, Oscar M.</au><au>Radnev-Nedev, Nicola</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convolutional neural networks applied to classification of nanoparticles and nanotubes images</atitle><btitle>2023 Mexican International Conference on Computer Science (ENC)</btitle><stitle>ENC</stitle><date>2023-09-11</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2332-5712</eissn><eisbn>9798350393156</eisbn><abstract>Nanotechnology is a promising research area involving the manipulation of nanomaterials and it has a wide variety of applications. To study these nanomaterials, researchers often use scanning electron microscopes (SEM) to generate and store images. However, different users tend to label the images using subjective criteria, which generates a large amount of data that is difficult to manage. To address this problem, we propose a convolutional neural network for image classification of nanomaterials. This work compares two convolutional neural networks, a custom network and a VGG16 network, and implements grid search to determine the best parameters for both networks. The results show that the custom network is more effective than VGG16 network, with a mean accuracy of 77.1% and F1 score of 76% versus 66.6% and 0.56%, respectively. Based on these results, we recommend using a custom network for image classification of nanomaterials with the following parameters: learning rate of 0.001, minibatch of 16, number of epochs 20, number of layers 3, and rmsprop optimizer.</abstract><pub>IEEE</pub><doi>10.1109/ENC60556.2023.10508707</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2332-5712 |
ispartof | 2023 Mexican International Conference on Computer Science (ENC), 2023, p.1-6 |
issn | 2332-5712 |
language | eng |
recordid | cdi_ieee_primary_10508707 |
source | IEEE Xplore All Conference Series |
subjects | Convolutional neural networks Cross validation Deep learning Grid search Image classification Manuals Nanomaterials Nanoparticles Nanotubes Scanning electron microscopy Transfer learning |
title | Convolutional neural networks applied to classification of nanoparticles and nanotubes images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convolutional%20neural%20networks%20applied%20to%20classification%20of%20nanoparticles%20and%20nanotubes%20images&rft.btitle=2023%20Mexican%20International%20Conference%20on%20Computer%20Science%20(ENC)&rft.au=Quintero-Lopez,%20Luis%20A.&rft.date=2023-09-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2332-5712&rft_id=info:doi/10.1109/ENC60556.2023.10508707&rft.eisbn=9798350393156&rft_dat=%3Cieee_CHZPO%3E10508707%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-155655d6f8f61a807f9814c154319ff100142e9ba491742eed9b8d5b611d774e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10508707&rfr_iscdi=true |