Loading…

Comprehensive Parameter Optimization Using an Empowered and Lightweight Surrogate Model

Fine tuning the parameters is crucial for achieving high-performance power electronics converters. Traditionally, iterative testing using professional simulation tools has been a common approach. However, running the simulation model is time consuming, and online parameter optimization generates par...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2024-10, Vol.39 (10), p.12124-12129
Main Authors: Yang, Qifan, Huang, Dihong, Chen, Yong, Dai, Ningyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c218t-3fdc052dcc839bb58c057a8a0aff8e3f82ffc8867928a217aa8404da3e2e5ef3
container_end_page 12129
container_issue 10
container_start_page 12124
container_title IEEE transactions on power electronics
container_volume 39
creator Yang, Qifan
Huang, Dihong
Chen, Yong
Dai, Ningyi
description Fine tuning the parameters is crucial for achieving high-performance power electronics converters. Traditionally, iterative testing using professional simulation tools has been a common approach. However, running the simulation model is time consuming, and online parameter optimization generates parameters specific to each operating condition. In this article, we propose a novel approach that combines artificial intelligence (AI)-aided parameter tuning with simulation using a data-driven empowered surrogate model. The surrogate model is trained using a dataset derived from 3000 simulation tests, enabling rapid parameter tuning with feedback on system performance within a time frame of less than 0.1 ms, even on devices with restricted computational capabilities. Moreover, comprehensive parameter optimization for multiscenarios can be achieved using the surrogate model. A case study focusing on the parameter tuning of the soft-open-point is provided, including a comparison with AI-aided autonomous online parameter tuning methods. The results demonstrate the effectiveness and efficiency of the proposed approach.
doi_str_mv 10.1109/TPEL.2024.3396504
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10518087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10518087</ieee_id><sourcerecordid>10_1109_TPEL_2024_3396504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-3fdc052dcc839bb58c057a8a0aff8e3f82ffc8867928a217aa8404da3e2e5ef3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILjIC0y9SSadm6WU-gMjLVhxOaQzN22k80MyWvTp7dAu3JzDgXPO4mPsVsBECDD3q-U8n0iQ6UQpM9WQnrGRMKlIQEB2zkaAqBM0Rl2yqxg_AUSqQYzYx6ytu0BbaqL_Jr60wdbUU-CLrve1_7W9bxv-Hn2z4bbh87pr9xSoOoSK536z7fc0KH_7CqHd2J74a1vR7ppdOLuLdHPyMVs9zlez5yRfPL3MHvKklAL7RLmqBC2rskRl1muNh5RZtGCdQ1IOpXMl4jQzEq0UmbWYQlpZRZI0OTVm4nhbhjbGQK7ogq9t-CkEFAOYYgBTDGCKE5jD5u648UT0r68FAmbqDzJKYa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive Parameter Optimization Using an Empowered and Lightweight Surrogate Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Qifan ; Huang, Dihong ; Chen, Yong ; Dai, Ningyi</creator><creatorcontrib>Yang, Qifan ; Huang, Dihong ; Chen, Yong ; Dai, Ningyi</creatorcontrib><description>Fine tuning the parameters is crucial for achieving high-performance power electronics converters. Traditionally, iterative testing using professional simulation tools has been a common approach. However, running the simulation model is time consuming, and online parameter optimization generates parameters specific to each operating condition. In this article, we propose a novel approach that combines artificial intelligence (AI)-aided parameter tuning with simulation using a data-driven empowered surrogate model. The surrogate model is trained using a dataset derived from 3000 simulation tests, enabling rapid parameter tuning with feedback on system performance within a time frame of less than 0.1 ms, even on devices with restricted computational capabilities. Moreover, comprehensive parameter optimization for multiscenarios can be achieved using the surrogate model. A case study focusing on the parameter tuning of the soft-open-point is provided, including a comparison with AI-aided autonomous online parameter tuning methods. The results demonstrate the effectiveness and efficiency of the proposed approach.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3396504</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Control parameter tuning ; Genetic algorithms ; Optimization ; Phase locked loops ; Power electronics ; Real-time systems ; simulation ; soft open point (SOP) ; surrogate model ; Tuning</subject><ispartof>IEEE transactions on power electronics, 2024-10, Vol.39 (10), p.12124-12129</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-3fdc052dcc839bb58c057a8a0aff8e3f82ffc8867928a217aa8404da3e2e5ef3</cites><orcidid>0009-0009-8162-6817 ; 0000-0002-1748-6444 ; 0009-0006-5139-3299 ; 0009-0006-3725-5092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10518087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yang, Qifan</creatorcontrib><creatorcontrib>Huang, Dihong</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Dai, Ningyi</creatorcontrib><title>Comprehensive Parameter Optimization Using an Empowered and Lightweight Surrogate Model</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Fine tuning the parameters is crucial for achieving high-performance power electronics converters. Traditionally, iterative testing using professional simulation tools has been a common approach. However, running the simulation model is time consuming, and online parameter optimization generates parameters specific to each operating condition. In this article, we propose a novel approach that combines artificial intelligence (AI)-aided parameter tuning with simulation using a data-driven empowered surrogate model. The surrogate model is trained using a dataset derived from 3000 simulation tests, enabling rapid parameter tuning with feedback on system performance within a time frame of less than 0.1 ms, even on devices with restricted computational capabilities. Moreover, comprehensive parameter optimization for multiscenarios can be achieved using the surrogate model. A case study focusing on the parameter tuning of the soft-open-point is provided, including a comparison with AI-aided autonomous online parameter tuning methods. The results demonstrate the effectiveness and efficiency of the proposed approach.</description><subject>Computational modeling</subject><subject>Control parameter tuning</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Phase locked loops</subject><subject>Power electronics</subject><subject>Real-time systems</subject><subject>simulation</subject><subject>soft open point (SOP)</subject><subject>surrogate model</subject><subject>Tuning</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhYMoWKsPILjIC0y9SSadm6WU-gMjLVhxOaQzN22k80MyWvTp7dAu3JzDgXPO4mPsVsBECDD3q-U8n0iQ6UQpM9WQnrGRMKlIQEB2zkaAqBM0Rl2yqxg_AUSqQYzYx6ytu0BbaqL_Jr60wdbUU-CLrve1_7W9bxv-Hn2z4bbh87pr9xSoOoSK536z7fc0KH_7CqHd2J74a1vR7ppdOLuLdHPyMVs9zlez5yRfPL3MHvKklAL7RLmqBC2rskRl1muNh5RZtGCdQ1IOpXMl4jQzEq0UmbWYQlpZRZI0OTVm4nhbhjbGQK7ogq9t-CkEFAOYYgBTDGCKE5jD5u648UT0r68FAmbqDzJKYa8</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Yang, Qifan</creator><creator>Huang, Dihong</creator><creator>Chen, Yong</creator><creator>Dai, Ningyi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-8162-6817</orcidid><orcidid>https://orcid.org/0000-0002-1748-6444</orcidid><orcidid>https://orcid.org/0009-0006-5139-3299</orcidid><orcidid>https://orcid.org/0009-0006-3725-5092</orcidid></search><sort><creationdate>20241001</creationdate><title>Comprehensive Parameter Optimization Using an Empowered and Lightweight Surrogate Model</title><author>Yang, Qifan ; Huang, Dihong ; Chen, Yong ; Dai, Ningyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-3fdc052dcc839bb58c057a8a0aff8e3f82ffc8867928a217aa8404da3e2e5ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Control parameter tuning</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Phase locked loops</topic><topic>Power electronics</topic><topic>Real-time systems</topic><topic>simulation</topic><topic>soft open point (SOP)</topic><topic>surrogate model</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qifan</creatorcontrib><creatorcontrib>Huang, Dihong</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Dai, Ningyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qifan</au><au>Huang, Dihong</au><au>Chen, Yong</au><au>Dai, Ningyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Parameter Optimization Using an Empowered and Lightweight Surrogate Model</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>39</volume><issue>10</issue><spage>12124</spage><epage>12129</epage><pages>12124-12129</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Fine tuning the parameters is crucial for achieving high-performance power electronics converters. Traditionally, iterative testing using professional simulation tools has been a common approach. However, running the simulation model is time consuming, and online parameter optimization generates parameters specific to each operating condition. In this article, we propose a novel approach that combines artificial intelligence (AI)-aided parameter tuning with simulation using a data-driven empowered surrogate model. The surrogate model is trained using a dataset derived from 3000 simulation tests, enabling rapid parameter tuning with feedback on system performance within a time frame of less than 0.1 ms, even on devices with restricted computational capabilities. Moreover, comprehensive parameter optimization for multiscenarios can be achieved using the surrogate model. A case study focusing on the parameter tuning of the soft-open-point is provided, including a comparison with AI-aided autonomous online parameter tuning methods. The results demonstrate the effectiveness and efficiency of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3396504</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0009-8162-6817</orcidid><orcidid>https://orcid.org/0000-0002-1748-6444</orcidid><orcidid>https://orcid.org/0009-0006-5139-3299</orcidid><orcidid>https://orcid.org/0009-0006-3725-5092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2024-10, Vol.39 (10), p.12124-12129
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_10518087
source IEEE Electronic Library (IEL) Journals
subjects Computational modeling
Control parameter tuning
Genetic algorithms
Optimization
Phase locked loops
Power electronics
Real-time systems
simulation
soft open point (SOP)
surrogate model
Tuning
title Comprehensive Parameter Optimization Using an Empowered and Lightweight Surrogate Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T03%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Parameter%20Optimization%20Using%20an%20Empowered%20and%20Lightweight%20Surrogate%20Model&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yang,%20Qifan&rft.date=2024-10-01&rft.volume=39&rft.issue=10&rft.spage=12124&rft.epage=12129&rft.pages=12124-12129&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3396504&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPEL_2024_3396504%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-3fdc052dcc839bb58c057a8a0aff8e3f82ffc8867928a217aa8404da3e2e5ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10518087&rfr_iscdi=true