Loading…
Complete Stability of Delayed Recurrent Neural Networks With New Wave-Type Activation Functions
Activation functions have a significant effect on the dynamics of neural networks (NNs). This study proposes new nonmonotonic wave-type activation functions and examines the complete stability of delayed recurrent NNs (DRNNs) with these activation functions. Using the geometrical properties of the w...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2024-05, Vol.PP, p.1-13 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Yan, Zepeng Sun, Wen Guo, Wanli Li, Biwen Wen, Shiping Cao, Jinde |
description | Activation functions have a significant effect on the dynamics of neural networks (NNs). This study proposes new nonmonotonic wave-type activation functions and examines the complete stability of delayed recurrent NNs (DRNNs) with these activation functions. Using the geometrical properties of the wave-type activation function and subsequent iteration scheme, sufficient conditions are provided to ensure that a DRNN with n neurons has exactly (2m + 3)^n equilibria, where (m + 2)^n equilibria are locally exponentially stable, the remainder (2m + 3)^n - (m + 2)^n equilibria are unstable, and a positive integer m is related to wave-type activation functions. Furthermore, the DRNN with the proposed activation function is completely stable. Compared with the previous literature, the total number of equilibria and the stable equilibria significantly increase, thereby enhancing the memory storage capacity of DRNN. Finally, several examples are presented to demonstrate our proposed results. |
doi_str_mv | 10.1109/TNNLS.2024.3394854 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10520819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10520819</ieee_id><sourcerecordid>3051937817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-941cf0964c41eb23b38e5f0dccddf142eae972c0c7a1f58cc3258f4d31d406cd3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRbKn9AiKyRy-p-y_J5liqVaFUsJV6WzabCUbTJu5uWvLtTW0V5_Jm4M2b4YfQJSUjSklyu5zPZ4sRI0yMOE-EDMUJ6jMasYBxKU__-vith4bOfZCuIhJGIjlHPS5jkkQk7iM1qdZ1CR7wwuu0KAvf4irHd1DqFjL8AqaxFjYez6GxuuzE7yr76fCq8O_dtMMrvYVg2daAx8YXW-2LaoOnzcbsG3eBznJdOhgedYBep_fLyWMwe354moxngWFx6INEUJN3LwkjKKSMp1xCmJPMmCzLqWCgIYmZISbWNA-lMZyFMhcZp5kgkcn4AN0ccmtbfTXgvFoXzkBZ6g1UjVOchDThsaRxZ2UHq7GVcxZyVdtirW2rKFF7tuqHrdqzVUe23dL1Mb9J15D9rfyS7AxXB0MBAP8SQ0Zkd_kbmLt-7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051937817</pqid></control><display><type>article</type><title>Complete Stability of Delayed Recurrent Neural Networks With New Wave-Type Activation Functions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yan, Zepeng ; Sun, Wen ; Guo, Wanli ; Li, Biwen ; Wen, Shiping ; Cao, Jinde</creator><creatorcontrib>Yan, Zepeng ; Sun, Wen ; Guo, Wanli ; Li, Biwen ; Wen, Shiping ; Cao, Jinde</creatorcontrib><description><![CDATA[Activation functions have a significant effect on the dynamics of neural networks (NNs). This study proposes new nonmonotonic wave-type activation functions and examines the complete stability of delayed recurrent NNs (DRNNs) with these activation functions. Using the geometrical properties of the wave-type activation function and subsequent iteration scheme, sufficient conditions are provided to ensure that a DRNN with n neurons has exactly <inline-formula> <tex-math notation="LaTeX">(2m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">3)^n</tex-math> </inline-formula> equilibria, where <inline-formula> <tex-math notation="LaTeX">(m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">2)^n</tex-math> </inline-formula> equilibria are locally exponentially stable, the remainder <inline-formula> <tex-math notation="LaTeX">(2m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">3)^n</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">(m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">2)^n</tex-math> </inline-formula> equilibria are unstable, and a positive integer <inline-formula> <tex-math notation="LaTeX">m</tex-math> </inline-formula> is related to wave-type activation functions. Furthermore, the DRNN with the proposed activation function is completely stable. Compared with the previous literature, the total number of equilibria and the stable equilibria significantly increase, thereby enhancing the memory storage capacity of DRNN. Finally, several examples are presented to demonstrate our proposed results.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3394854</identifier><identifier>PMID: 38709607</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Complete stability ; delayed recurrent neural network (DRNN) ; Delays ; Neurons ; Numerical stability ; Stability criteria ; Sun ; Thermal stability ; time-varying delay ; wave-type activation function</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-05, Vol.PP, p.1-13</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-5291-9472 ; 0000-0002-5048-0319 ; 0000-0001-7070-4730 ; 0000-0003-0312-7464 ; 0000-0003-3133-7119 ; 0000-0003-2928-6703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10520819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38709607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Zepeng</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><creatorcontrib>Guo, Wanli</creatorcontrib><creatorcontrib>Li, Biwen</creatorcontrib><creatorcontrib>Wen, Shiping</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><title>Complete Stability of Delayed Recurrent Neural Networks With New Wave-Type Activation Functions</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[Activation functions have a significant effect on the dynamics of neural networks (NNs). This study proposes new nonmonotonic wave-type activation functions and examines the complete stability of delayed recurrent NNs (DRNNs) with these activation functions. Using the geometrical properties of the wave-type activation function and subsequent iteration scheme, sufficient conditions are provided to ensure that a DRNN with n neurons has exactly <inline-formula> <tex-math notation="LaTeX">(2m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">3)^n</tex-math> </inline-formula> equilibria, where <inline-formula> <tex-math notation="LaTeX">(m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">2)^n</tex-math> </inline-formula> equilibria are locally exponentially stable, the remainder <inline-formula> <tex-math notation="LaTeX">(2m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">3)^n</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">(m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">2)^n</tex-math> </inline-formula> equilibria are unstable, and a positive integer <inline-formula> <tex-math notation="LaTeX">m</tex-math> </inline-formula> is related to wave-type activation functions. Furthermore, the DRNN with the proposed activation function is completely stable. Compared with the previous literature, the total number of equilibria and the stable equilibria significantly increase, thereby enhancing the memory storage capacity of DRNN. Finally, several examples are presented to demonstrate our proposed results.]]></description><subject>Artificial neural networks</subject><subject>Complete stability</subject><subject>delayed recurrent neural network (DRNN)</subject><subject>Delays</subject><subject>Neurons</subject><subject>Numerical stability</subject><subject>Stability criteria</subject><subject>Sun</subject><subject>Thermal stability</subject><subject>time-varying delay</subject><subject>wave-type activation function</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRbKn9AiKyRy-p-y_J5liqVaFUsJV6WzabCUbTJu5uWvLtTW0V5_Jm4M2b4YfQJSUjSklyu5zPZ4sRI0yMOE-EDMUJ6jMasYBxKU__-vith4bOfZCuIhJGIjlHPS5jkkQk7iM1qdZ1CR7wwuu0KAvf4irHd1DqFjL8AqaxFjYez6GxuuzE7yr76fCq8O_dtMMrvYVg2daAx8YXW-2LaoOnzcbsG3eBznJdOhgedYBep_fLyWMwe354moxngWFx6INEUJN3LwkjKKSMp1xCmJPMmCzLqWCgIYmZISbWNA-lMZyFMhcZp5kgkcn4AN0ccmtbfTXgvFoXzkBZ6g1UjVOchDThsaRxZ2UHq7GVcxZyVdtirW2rKFF7tuqHrdqzVUe23dL1Mb9J15D9rfyS7AxXB0MBAP8SQ0Zkd_kbmLt-7w</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Yan, Zepeng</creator><creator>Sun, Wen</creator><creator>Guo, Wanli</creator><creator>Li, Biwen</creator><creator>Wen, Shiping</creator><creator>Cao, Jinde</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-5291-9472</orcidid><orcidid>https://orcid.org/0000-0002-5048-0319</orcidid><orcidid>https://orcid.org/0000-0001-7070-4730</orcidid><orcidid>https://orcid.org/0000-0003-0312-7464</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0003-2928-6703</orcidid></search><sort><creationdate>20240506</creationdate><title>Complete Stability of Delayed Recurrent Neural Networks With New Wave-Type Activation Functions</title><author>Yan, Zepeng ; Sun, Wen ; Guo, Wanli ; Li, Biwen ; Wen, Shiping ; Cao, Jinde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-941cf0964c41eb23b38e5f0dccddf142eae972c0c7a1f58cc3258f4d31d406cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Complete stability</topic><topic>delayed recurrent neural network (DRNN)</topic><topic>Delays</topic><topic>Neurons</topic><topic>Numerical stability</topic><topic>Stability criteria</topic><topic>Sun</topic><topic>Thermal stability</topic><topic>time-varying delay</topic><topic>wave-type activation function</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zepeng</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><creatorcontrib>Guo, Wanli</creatorcontrib><creatorcontrib>Li, Biwen</creatorcontrib><creatorcontrib>Wen, Shiping</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Zepeng</au><au>Sun, Wen</au><au>Guo, Wanli</au><au>Li, Biwen</au><au>Wen, Shiping</au><au>Cao, Jinde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Stability of Delayed Recurrent Neural Networks With New Wave-Type Activation Functions</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-05-06</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[Activation functions have a significant effect on the dynamics of neural networks (NNs). This study proposes new nonmonotonic wave-type activation functions and examines the complete stability of delayed recurrent NNs (DRNNs) with these activation functions. Using the geometrical properties of the wave-type activation function and subsequent iteration scheme, sufficient conditions are provided to ensure that a DRNN with n neurons has exactly <inline-formula> <tex-math notation="LaTeX">(2m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">3)^n</tex-math> </inline-formula> equilibria, where <inline-formula> <tex-math notation="LaTeX">(m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">2)^n</tex-math> </inline-formula> equilibria are locally exponentially stable, the remainder <inline-formula> <tex-math notation="LaTeX">(2m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">3)^n</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">(m</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">2)^n</tex-math> </inline-formula> equilibria are unstable, and a positive integer <inline-formula> <tex-math notation="LaTeX">m</tex-math> </inline-formula> is related to wave-type activation functions. Furthermore, the DRNN with the proposed activation function is completely stable. Compared with the previous literature, the total number of equilibria and the stable equilibria significantly increase, thereby enhancing the memory storage capacity of DRNN. Finally, several examples are presented to demonstrate our proposed results.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>38709607</pmid><doi>10.1109/TNNLS.2024.3394854</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0007-5291-9472</orcidid><orcidid>https://orcid.org/0000-0002-5048-0319</orcidid><orcidid>https://orcid.org/0000-0001-7070-4730</orcidid><orcidid>https://orcid.org/0000-0003-0312-7464</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0003-2928-6703</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-05, Vol.PP, p.1-13 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_10520819 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Complete stability delayed recurrent neural network (DRNN) Delays Neurons Numerical stability Stability criteria Sun Thermal stability time-varying delay wave-type activation function |
title | Complete Stability of Delayed Recurrent Neural Networks With New Wave-Type Activation Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Stability%20of%20Delayed%20Recurrent%20Neural%20Networks%20With%20New%20Wave-Type%20Activation%20Functions&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Yan,%20Zepeng&rft.date=2024-05-06&rft.volume=PP&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3394854&rft_dat=%3Cproquest_ieee_%3E3051937817%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-941cf0964c41eb23b38e5f0dccddf142eae972c0c7a1f58cc3258f4d31d406cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051937817&rft_id=info:pmid/38709607&rft_ieee_id=10520819&rfr_iscdi=true |