Loading…
Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems
Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 721 |
container_issue | |
container_start_page | 716 |
container_title | |
container_volume | |
creator | Mendenhall, Carly A. Hardan, Jonathan Chiang, Trysta D. Blumenschein, Laura H. Tepole, Adrian Buganza |
description | Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed neural network model formed by combining a low fidelity analytical model and input-convex neural networks to learn an underlying energy potential for the actuator from experimental and finite element simulation data. In doing this, the neural network can provide sufficiently accurate predictions about systems made up of multiple units, essentially scaling the model from a single unit to an assembly of many. To test this concept, we compare predictions of the deformation of a 5-actuator system from an FE model and from the physics-informed neural network. The neural network, which provides a prediction similar in accuracy to the FE equivalent, can more easily be adjusted to execute systems of greater quantities of units without drastic increases in computational consumption. In this way, we can scale our predictive understanding with adequate accuracy without compounding resources. |
doi_str_mv | 10.1109/RoboSoft60065.2024.10522053 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10522053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10522053</ieee_id><sourcerecordid>10522053</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-d56910f570481f7c5fd9bff88123c8f2d539c3130f1b6f5f971fb5615e4abe033</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhFdBsNT8Aw8Bz4nvfmePpagt1A-snsvuZl-MJkayGyT_3hSVOTwwAzMMIVcUSkrBXD_3rt_3mBSAkiUDJkoKkjGQ_IRkRpuKS-AVnXVKFkwrUwjJxTnJYnwHAM5AMKYXZPP0NsXGx2L7if3QhTp_CONg2xnpux8-8tnN99621rUhP07m92ObmmLl02jTMZxiCl28IGdo2xiyPy7J6-3Ny3pT7B7vtuvVrmjmyVTUUhkKKDWIiqL2EmvjEKuKMu4rZLXkxnPKAalTKNFoik4qKoOwLgDnS3L529uEEA5fQ9PZYTr8n-c_A1tQLg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems</title><source>IEEE Xplore All Conference Series</source><creator>Mendenhall, Carly A. ; Hardan, Jonathan ; Chiang, Trysta D. ; Blumenschein, Laura H. ; Tepole, Adrian Buganza</creator><creatorcontrib>Mendenhall, Carly A. ; Hardan, Jonathan ; Chiang, Trysta D. ; Blumenschein, Laura H. ; Tepole, Adrian Buganza</creatorcontrib><description>Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed neural network model formed by combining a low fidelity analytical model and input-convex neural networks to learn an underlying energy potential for the actuator from experimental and finite element simulation data. In doing this, the neural network can provide sufficiently accurate predictions about systems made up of multiple units, essentially scaling the model from a single unit to an assembly of many. To test this concept, we compare predictions of the deformation of a 5-actuator system from an FE model and from the physics-informed neural network. The neural network, which provides a prediction similar in accuracy to the FE equivalent, can more easily be adjusted to execute systems of greater quantities of units without drastic increases in computational consumption. In this way, we can scale our predictive understanding with adequate accuracy without compounding resources.</description><identifier>EISSN: 2769-4534</identifier><identifier>EISBN: 9798350381818</identifier><identifier>DOI: 10.1109/RoboSoft60065.2024.10522053</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Analytical models ; Deformable models ; Deformation ; Neural networks ; Predictive models ; Prototypes</subject><ispartof>2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), 2024, p.716-721</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10522053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10522053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mendenhall, Carly A.</creatorcontrib><creatorcontrib>Hardan, Jonathan</creatorcontrib><creatorcontrib>Chiang, Trysta D.</creatorcontrib><creatorcontrib>Blumenschein, Laura H.</creatorcontrib><creatorcontrib>Tepole, Adrian Buganza</creatorcontrib><title>Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems</title><title>2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)</title><addtitle>ROBOSOFT</addtitle><description>Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed neural network model formed by combining a low fidelity analytical model and input-convex neural networks to learn an underlying energy potential for the actuator from experimental and finite element simulation data. In doing this, the neural network can provide sufficiently accurate predictions about systems made up of multiple units, essentially scaling the model from a single unit to an assembly of many. To test this concept, we compare predictions of the deformation of a 5-actuator system from an FE model and from the physics-informed neural network. The neural network, which provides a prediction similar in accuracy to the FE equivalent, can more easily be adjusted to execute systems of greater quantities of units without drastic increases in computational consumption. In this way, we can scale our predictive understanding with adequate accuracy without compounding resources.</description><subject>Actuators</subject><subject>Analytical models</subject><subject>Deformable models</subject><subject>Deformation</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Prototypes</subject><issn>2769-4534</issn><isbn>9798350381818</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AYhFdBsNT8Aw8Bz4nvfmePpagt1A-snsvuZl-MJkayGyT_3hSVOTwwAzMMIVcUSkrBXD_3rt_3mBSAkiUDJkoKkjGQ_IRkRpuKS-AVnXVKFkwrUwjJxTnJYnwHAM5AMKYXZPP0NsXGx2L7if3QhTp_CONg2xnpux8-8tnN99621rUhP07m92ObmmLl02jTMZxiCl28IGdo2xiyPy7J6-3Ny3pT7B7vtuvVrmjmyVTUUhkKKDWIiqL2EmvjEKuKMu4rZLXkxnPKAalTKNFoik4qKoOwLgDnS3L529uEEA5fQ9PZYTr8n-c_A1tQLg</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Mendenhall, Carly A.</creator><creator>Hardan, Jonathan</creator><creator>Chiang, Trysta D.</creator><creator>Blumenschein, Laura H.</creator><creator>Tepole, Adrian Buganza</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240414</creationdate><title>Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems</title><author>Mendenhall, Carly A. ; Hardan, Jonathan ; Chiang, Trysta D. ; Blumenschein, Laura H. ; Tepole, Adrian Buganza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-d56910f570481f7c5fd9bff88123c8f2d539c3130f1b6f5f971fb5615e4abe033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Analytical models</topic><topic>Deformable models</topic><topic>Deformation</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Prototypes</topic><toplevel>online_resources</toplevel><creatorcontrib>Mendenhall, Carly A.</creatorcontrib><creatorcontrib>Hardan, Jonathan</creatorcontrib><creatorcontrib>Chiang, Trysta D.</creatorcontrib><creatorcontrib>Blumenschein, Laura H.</creatorcontrib><creatorcontrib>Tepole, Adrian Buganza</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mendenhall, Carly A.</au><au>Hardan, Jonathan</au><au>Chiang, Trysta D.</au><au>Blumenschein, Laura H.</au><au>Tepole, Adrian Buganza</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems</atitle><btitle>2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)</btitle><stitle>ROBOSOFT</stitle><date>2024-04-14</date><risdate>2024</risdate><spage>716</spage><epage>721</epage><pages>716-721</pages><eissn>2769-4534</eissn><eisbn>9798350381818</eisbn><abstract>Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed neural network model formed by combining a low fidelity analytical model and input-convex neural networks to learn an underlying energy potential for the actuator from experimental and finite element simulation data. In doing this, the neural network can provide sufficiently accurate predictions about systems made up of multiple units, essentially scaling the model from a single unit to an assembly of many. To test this concept, we compare predictions of the deformation of a 5-actuator system from an FE model and from the physics-informed neural network. The neural network, which provides a prediction similar in accuracy to the FE equivalent, can more easily be adjusted to execute systems of greater quantities of units without drastic increases in computational consumption. In this way, we can scale our predictive understanding with adequate accuracy without compounding resources.</abstract><pub>IEEE</pub><doi>10.1109/RoboSoft60065.2024.10522053</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2769-4534 |
ispartof | 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), 2024, p.716-721 |
issn | 2769-4534 |
language | eng |
recordid | cdi_ieee_primary_10522053 |
source | IEEE Xplore All Conference Series |
subjects | Actuators Analytical models Deformable models Deformation Neural networks Predictive models Prototypes |
title | Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Physics-Informed%20Neural%20Network%20for%20Scalable%20Soft%20Multi-Actuator%20Systems&rft.btitle=2024%20IEEE%207th%20International%20Conference%20on%20Soft%20Robotics%20(RoboSoft)&rft.au=Mendenhall,%20Carly%20A.&rft.date=2024-04-14&rft.spage=716&rft.epage=721&rft.pages=716-721&rft.eissn=2769-4534&rft_id=info:doi/10.1109/RoboSoft60065.2024.10522053&rft.eisbn=9798350381818&rft_dat=%3Cieee_CHZPO%3E10522053%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-d56910f570481f7c5fd9bff88123c8f2d539c3130f1b6f5f971fb5615e4abe033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10522053&rfr_iscdi=true |