Loading…

Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems

Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed...

Full description

Saved in:
Bibliographic Details
Main Authors: Mendenhall, Carly A., Hardan, Jonathan, Chiang, Trysta D., Blumenschein, Laura H., Tepole, Adrian Buganza
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 721
container_issue
container_start_page 716
container_title
container_volume
creator Mendenhall, Carly A.
Hardan, Jonathan
Chiang, Trysta D.
Blumenschein, Laura H.
Tepole, Adrian Buganza
description Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed neural network model formed by combining a low fidelity analytical model and input-convex neural networks to learn an underlying energy potential for the actuator from experimental and finite element simulation data. In doing this, the neural network can provide sufficiently accurate predictions about systems made up of multiple units, essentially scaling the model from a single unit to an assembly of many. To test this concept, we compare predictions of the deformation of a 5-actuator system from an FE model and from the physics-informed neural network. The neural network, which provides a prediction similar in accuracy to the FE equivalent, can more easily be adjusted to execute systems of greater quantities of units without drastic increases in computational consumption. In this way, we can scale our predictive understanding with adequate accuracy without compounding resources.
doi_str_mv 10.1109/RoboSoft60065.2024.10522053
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10522053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10522053</ieee_id><sourcerecordid>10522053</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-d56910f570481f7c5fd9bff88123c8f2d539c3130f1b6f5f971fb5615e4abe033</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhFdBsNT8Aw8Bz4nvfmePpagt1A-snsvuZl-MJkayGyT_3hSVOTwwAzMMIVcUSkrBXD_3rt_3mBSAkiUDJkoKkjGQ_IRkRpuKS-AVnXVKFkwrUwjJxTnJYnwHAM5AMKYXZPP0NsXGx2L7if3QhTp_CONg2xnpux8-8tnN99621rUhP07m92ObmmLl02jTMZxiCl28IGdo2xiyPy7J6-3Ny3pT7B7vtuvVrmjmyVTUUhkKKDWIiqL2EmvjEKuKMu4rZLXkxnPKAalTKNFoik4qKoOwLgDnS3L529uEEA5fQ9PZYTr8n-c_A1tQLg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems</title><source>IEEE Xplore All Conference Series</source><creator>Mendenhall, Carly A. ; Hardan, Jonathan ; Chiang, Trysta D. ; Blumenschein, Laura H. ; Tepole, Adrian Buganza</creator><creatorcontrib>Mendenhall, Carly A. ; Hardan, Jonathan ; Chiang, Trysta D. ; Blumenschein, Laura H. ; Tepole, Adrian Buganza</creatorcontrib><description>Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed neural network model formed by combining a low fidelity analytical model and input-convex neural networks to learn an underlying energy potential for the actuator from experimental and finite element simulation data. In doing this, the neural network can provide sufficiently accurate predictions about systems made up of multiple units, essentially scaling the model from a single unit to an assembly of many. To test this concept, we compare predictions of the deformation of a 5-actuator system from an FE model and from the physics-informed neural network. The neural network, which provides a prediction similar in accuracy to the FE equivalent, can more easily be adjusted to execute systems of greater quantities of units without drastic increases in computational consumption. In this way, we can scale our predictive understanding with adequate accuracy without compounding resources.</description><identifier>EISSN: 2769-4534</identifier><identifier>EISBN: 9798350381818</identifier><identifier>DOI: 10.1109/RoboSoft60065.2024.10522053</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Analytical models ; Deformable models ; Deformation ; Neural networks ; Predictive models ; Prototypes</subject><ispartof>2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), 2024, p.716-721</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10522053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10522053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mendenhall, Carly A.</creatorcontrib><creatorcontrib>Hardan, Jonathan</creatorcontrib><creatorcontrib>Chiang, Trysta D.</creatorcontrib><creatorcontrib>Blumenschein, Laura H.</creatorcontrib><creatorcontrib>Tepole, Adrian Buganza</creatorcontrib><title>Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems</title><title>2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)</title><addtitle>ROBOSOFT</addtitle><description>Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed neural network model formed by combining a low fidelity analytical model and input-convex neural networks to learn an underlying energy potential for the actuator from experimental and finite element simulation data. In doing this, the neural network can provide sufficiently accurate predictions about systems made up of multiple units, essentially scaling the model from a single unit to an assembly of many. To test this concept, we compare predictions of the deformation of a 5-actuator system from an FE model and from the physics-informed neural network. The neural network, which provides a prediction similar in accuracy to the FE equivalent, can more easily be adjusted to execute systems of greater quantities of units without drastic increases in computational consumption. In this way, we can scale our predictive understanding with adequate accuracy without compounding resources.</description><subject>Actuators</subject><subject>Analytical models</subject><subject>Deformable models</subject><subject>Deformation</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Prototypes</subject><issn>2769-4534</issn><isbn>9798350381818</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AYhFdBsNT8Aw8Bz4nvfmePpagt1A-snsvuZl-MJkayGyT_3hSVOTwwAzMMIVcUSkrBXD_3rt_3mBSAkiUDJkoKkjGQ_IRkRpuKS-AVnXVKFkwrUwjJxTnJYnwHAM5AMKYXZPP0NsXGx2L7if3QhTp_CONg2xnpux8-8tnN99621rUhP07m92ObmmLl02jTMZxiCl28IGdo2xiyPy7J6-3Ny3pT7B7vtuvVrmjmyVTUUhkKKDWIiqL2EmvjEKuKMu4rZLXkxnPKAalTKNFoik4qKoOwLgDnS3L529uEEA5fQ9PZYTr8n-c_A1tQLg</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Mendenhall, Carly A.</creator><creator>Hardan, Jonathan</creator><creator>Chiang, Trysta D.</creator><creator>Blumenschein, Laura H.</creator><creator>Tepole, Adrian Buganza</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240414</creationdate><title>Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems</title><author>Mendenhall, Carly A. ; Hardan, Jonathan ; Chiang, Trysta D. ; Blumenschein, Laura H. ; Tepole, Adrian Buganza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-d56910f570481f7c5fd9bff88123c8f2d539c3130f1b6f5f971fb5615e4abe033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Analytical models</topic><topic>Deformable models</topic><topic>Deformation</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Prototypes</topic><toplevel>online_resources</toplevel><creatorcontrib>Mendenhall, Carly A.</creatorcontrib><creatorcontrib>Hardan, Jonathan</creatorcontrib><creatorcontrib>Chiang, Trysta D.</creatorcontrib><creatorcontrib>Blumenschein, Laura H.</creatorcontrib><creatorcontrib>Tepole, Adrian Buganza</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mendenhall, Carly A.</au><au>Hardan, Jonathan</au><au>Chiang, Trysta D.</au><au>Blumenschein, Laura H.</au><au>Tepole, Adrian Buganza</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems</atitle><btitle>2024 IEEE 7th International Conference on Soft Robotics (RoboSoft)</btitle><stitle>ROBOSOFT</stitle><date>2024-04-14</date><risdate>2024</risdate><spage>716</spage><epage>721</epage><pages>716-721</pages><eissn>2769-4534</eissn><eisbn>9798350381818</eisbn><abstract>Soft actuators, distinguished by their complex nonlinear behavior, are difficult to model analytically and cumbersome to prototype. Finite element (FE) models allow for more efficient behavioral prediction, but often require onerous setup, especially for large systems. We present a physics-informed neural network model formed by combining a low fidelity analytical model and input-convex neural networks to learn an underlying energy potential for the actuator from experimental and finite element simulation data. In doing this, the neural network can provide sufficiently accurate predictions about systems made up of multiple units, essentially scaling the model from a single unit to an assembly of many. To test this concept, we compare predictions of the deformation of a 5-actuator system from an FE model and from the physics-informed neural network. The neural network, which provides a prediction similar in accuracy to the FE equivalent, can more easily be adjusted to execute systems of greater quantities of units without drastic increases in computational consumption. In this way, we can scale our predictive understanding with adequate accuracy without compounding resources.</abstract><pub>IEEE</pub><doi>10.1109/RoboSoft60065.2024.10522053</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2769-4534
ispartof 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), 2024, p.716-721
issn 2769-4534
language eng
recordid cdi_ieee_primary_10522053
source IEEE Xplore All Conference Series
subjects Actuators
Analytical models
Deformable models
Deformation
Neural networks
Predictive models
Prototypes
title Physics-Informed Neural Network for Scalable Soft Multi-Actuator Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Physics-Informed%20Neural%20Network%20for%20Scalable%20Soft%20Multi-Actuator%20Systems&rft.btitle=2024%20IEEE%207th%20International%20Conference%20on%20Soft%20Robotics%20(RoboSoft)&rft.au=Mendenhall,%20Carly%20A.&rft.date=2024-04-14&rft.spage=716&rft.epage=721&rft.pages=716-721&rft.eissn=2769-4534&rft_id=info:doi/10.1109/RoboSoft60065.2024.10522053&rft.eisbn=9798350381818&rft_dat=%3Cieee_CHZPO%3E10522053%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-d56910f570481f7c5fd9bff88123c8f2d539c3130f1b6f5f971fb5615e4abe033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10522053&rfr_iscdi=true