Loading…

Characteristics of Air Traffic Flow in Terminal Airspace: A Multiplex Recurrence Network Analysis

We introduce a novel data analytics framework, using a multiplex recurrence network (MRN) to analyze flight tracking flow fluctuations in multi-airport terminal areas, with a case study on Shanghai's Pudong (PVG) and Hongqiao (SHA) airports. It fills the gap in existing research by focusing on...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2024-10, Vol.25 (10), p.14803-14815
Main Authors: Jiang, Furong, Zhang, Zhaoning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c218t-68b374738774ea656e6c903def6fe1c09ed56be303dc7bb5cbdc600c9caf361d3
container_end_page 14815
container_issue 10
container_start_page 14803
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Jiang, Furong
Zhang, Zhaoning
description We introduce a novel data analytics framework, using a multiplex recurrence network (MRN) to analyze flight tracking flow fluctuations in multi-airport terminal areas, with a case study on Shanghai's Pudong (PVG) and Hongqiao (SHA) airports. It fills the gap in existing research by focusing on daily traffic flow fluctuations and exploring the operational dynamics within multi-airport systems. The MRN method effectively captures the synchronicity and similarity of traffic flows, offering novel insights into the management of airport terminal areas. Empirical analysis based on actual flight operation data validates the MRN's efficacy, revealing distinct patterns of traffic flow synchronicity across four different scenarios-All Arrivals of PVG and SHA (AllArr), All Departures of PVG and SHA (AllDep), All Arrivals and Departures of PVG (AllPVG), and All Arrivals and Departures of SHA (AllSHA). These findings highlight the potential for enhancing operational efficiency by improving the synchronicity of traffic flows, especially during peak periods. This novel framework for understanding and optimizing air traffic flows in terminal areas offers both academic insights and practical implications for air traffic management, and provides a foundation for targeted interventions to improve the efficiency of airport operations in multi-airport systems.
doi_str_mv 10.1109/TITS.2024.3396627
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10530506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10530506</ieee_id><sourcerecordid>10_1109_TITS_2024_3396627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-68b374738774ea656e6c903def6fe1c09ed56be303dc7bb5cbdc600c9caf361d3</originalsourceid><addsrcrecordid>eNpNkEFPhDAUhBujievqDzDx0D8AtpQW8EaIq5usmiieSXm8xioLpGWz7r8XsnvwNC_zZubwEXLLWcg5y-7LdfkRRiyKQyEypaLkjCy4lGnAGFfn8x3FQcYkuyRX3n9Pbiw5XxBdfGmnYURn_WjB097Q3DpaOm2MBbpq-z21HS3RbW2n2_npBw34QHP6smtHO7T4S98Rds5hB0hfcdz37ofmU_rgrb8mF0a3Hm9OuiSfq8eyeA42b0_rIt8EEPF0DFRaiyRORJokMWolFSrImGjQKIMcWIaNVDWKyYKkriXUDSjGIANthOKNWBJ-3AXXe-_QVIOzW-0OFWfVzKiaGVUzo-rEaOrcHTsWEf_lpZhIKfEH7pNklQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characteristics of Air Traffic Flow in Terminal Airspace: A Multiplex Recurrence Network Analysis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiang, Furong ; Zhang, Zhaoning</creator><creatorcontrib>Jiang, Furong ; Zhang, Zhaoning</creatorcontrib><description>We introduce a novel data analytics framework, using a multiplex recurrence network (MRN) to analyze flight tracking flow fluctuations in multi-airport terminal areas, with a case study on Shanghai's Pudong (PVG) and Hongqiao (SHA) airports. It fills the gap in existing research by focusing on daily traffic flow fluctuations and exploring the operational dynamics within multi-airport systems. The MRN method effectively captures the synchronicity and similarity of traffic flows, offering novel insights into the management of airport terminal areas. Empirical analysis based on actual flight operation data validates the MRN's efficacy, revealing distinct patterns of traffic flow synchronicity across four different scenarios-All Arrivals of PVG and SHA (AllArr), All Departures of PVG and SHA (AllDep), All Arrivals and Departures of PVG (AllPVG), and All Arrivals and Departures of SHA (AllSHA). These findings highlight the potential for enhancing operational efficiency by improving the synchronicity of traffic flows, especially during peak periods. This novel framework for understanding and optimizing air traffic flows in terminal areas offers both academic insights and practical implications for air traffic management, and provides a foundation for targeted interventions to improve the efficiency of airport operations in multi-airport systems.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3396627</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air traffic control ; Air traffic flow ; Airports ; Clustering algorithms ; density-based spatial clustering of applications with noise (DBSCAN) ; Fluctuations ; multiplex recurrence network (MRN) ; Multiplexing ; terminal airspace ; Time series analysis ; Trajectory</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.14803-14815</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-68b374738774ea656e6c903def6fe1c09ed56be303dc7bb5cbdc600c9caf361d3</cites><orcidid>0000-0002-9630-2016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10530506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jiang, Furong</creatorcontrib><creatorcontrib>Zhang, Zhaoning</creatorcontrib><title>Characteristics of Air Traffic Flow in Terminal Airspace: A Multiplex Recurrence Network Analysis</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>We introduce a novel data analytics framework, using a multiplex recurrence network (MRN) to analyze flight tracking flow fluctuations in multi-airport terminal areas, with a case study on Shanghai's Pudong (PVG) and Hongqiao (SHA) airports. It fills the gap in existing research by focusing on daily traffic flow fluctuations and exploring the operational dynamics within multi-airport systems. The MRN method effectively captures the synchronicity and similarity of traffic flows, offering novel insights into the management of airport terminal areas. Empirical analysis based on actual flight operation data validates the MRN's efficacy, revealing distinct patterns of traffic flow synchronicity across four different scenarios-All Arrivals of PVG and SHA (AllArr), All Departures of PVG and SHA (AllDep), All Arrivals and Departures of PVG (AllPVG), and All Arrivals and Departures of SHA (AllSHA). These findings highlight the potential for enhancing operational efficiency by improving the synchronicity of traffic flows, especially during peak periods. This novel framework for understanding and optimizing air traffic flows in terminal areas offers both academic insights and practical implications for air traffic management, and provides a foundation for targeted interventions to improve the efficiency of airport operations in multi-airport systems.</description><subject>Air traffic control</subject><subject>Air traffic flow</subject><subject>Airports</subject><subject>Clustering algorithms</subject><subject>density-based spatial clustering of applications with noise (DBSCAN)</subject><subject>Fluctuations</subject><subject>multiplex recurrence network (MRN)</subject><subject>Multiplexing</subject><subject>terminal airspace</subject><subject>Time series analysis</subject><subject>Trajectory</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPhDAUhBujievqDzDx0D8AtpQW8EaIq5usmiieSXm8xioLpGWz7r8XsnvwNC_zZubwEXLLWcg5y-7LdfkRRiyKQyEypaLkjCy4lGnAGFfn8x3FQcYkuyRX3n9Pbiw5XxBdfGmnYURn_WjB097Q3DpaOm2MBbpq-z21HS3RbW2n2_npBw34QHP6smtHO7T4S98Rds5hB0hfcdz37ofmU_rgrb8mF0a3Hm9OuiSfq8eyeA42b0_rIt8EEPF0DFRaiyRORJokMWolFSrImGjQKIMcWIaNVDWKyYKkriXUDSjGIANthOKNWBJ-3AXXe-_QVIOzW-0OFWfVzKiaGVUzo-rEaOrcHTsWEf_lpZhIKfEH7pNklQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Jiang, Furong</creator><creator>Zhang, Zhaoning</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9630-2016</orcidid></search><sort><creationdate>20241001</creationdate><title>Characteristics of Air Traffic Flow in Terminal Airspace: A Multiplex Recurrence Network Analysis</title><author>Jiang, Furong ; Zhang, Zhaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-68b374738774ea656e6c903def6fe1c09ed56be303dc7bb5cbdc600c9caf361d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air traffic control</topic><topic>Air traffic flow</topic><topic>Airports</topic><topic>Clustering algorithms</topic><topic>density-based spatial clustering of applications with noise (DBSCAN)</topic><topic>Fluctuations</topic><topic>multiplex recurrence network (MRN)</topic><topic>Multiplexing</topic><topic>terminal airspace</topic><topic>Time series analysis</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Furong</creatorcontrib><creatorcontrib>Zhang, Zhaoning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Furong</au><au>Zhang, Zhaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of Air Traffic Flow in Terminal Airspace: A Multiplex Recurrence Network Analysis</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>25</volume><issue>10</issue><spage>14803</spage><epage>14815</epage><pages>14803-14815</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>We introduce a novel data analytics framework, using a multiplex recurrence network (MRN) to analyze flight tracking flow fluctuations in multi-airport terminal areas, with a case study on Shanghai's Pudong (PVG) and Hongqiao (SHA) airports. It fills the gap in existing research by focusing on daily traffic flow fluctuations and exploring the operational dynamics within multi-airport systems. The MRN method effectively captures the synchronicity and similarity of traffic flows, offering novel insights into the management of airport terminal areas. Empirical analysis based on actual flight operation data validates the MRN's efficacy, revealing distinct patterns of traffic flow synchronicity across four different scenarios-All Arrivals of PVG and SHA (AllArr), All Departures of PVG and SHA (AllDep), All Arrivals and Departures of PVG (AllPVG), and All Arrivals and Departures of SHA (AllSHA). These findings highlight the potential for enhancing operational efficiency by improving the synchronicity of traffic flows, especially during peak periods. This novel framework for understanding and optimizing air traffic flows in terminal areas offers both academic insights and practical implications for air traffic management, and provides a foundation for targeted interventions to improve the efficiency of airport operations in multi-airport systems.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3396627</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9630-2016</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.14803-14815
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10530506
source IEEE Electronic Library (IEL) Journals
subjects Air traffic control
Air traffic flow
Airports
Clustering algorithms
density-based spatial clustering of applications with noise (DBSCAN)
Fluctuations
multiplex recurrence network (MRN)
Multiplexing
terminal airspace
Time series analysis
Trajectory
title Characteristics of Air Traffic Flow in Terminal Airspace: A Multiplex Recurrence Network Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20Air%20Traffic%20Flow%20in%20Terminal%20Airspace:%20A%20Multiplex%20Recurrence%20Network%20Analysis&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Jiang,%20Furong&rft.date=2024-10-01&rft.volume=25&rft.issue=10&rft.spage=14803&rft.epage=14815&rft.pages=14803-14815&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3396627&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3396627%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-68b374738774ea656e6c903def6fe1c09ed56be303dc7bb5cbdc600c9caf361d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10530506&rfr_iscdi=true