Loading…

Accelerated Lifetime Model-Based Design Optimization Strategy With Efficiency, Reliability, and Cost Trade-Off for High-Power Modular AFE Rectifiers

This paper presents a design optimization for grid-connected modular Active Front-End (AFE) rectifiers with an evaluation of efficiency, lifetime, cost, volume, and weight. This tool optimizes the rectifier switching frequency, component sizing and selection, and the number of parallel converters by...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.71286-71303
Main Authors: Zhaksylyk, Assel, Polat, Hakan, Jaman, Shahid, Geury, Thomas, Hegazy, Omar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-58b71df8f34a5342bd107079c0d1e36200e0f0b30aafd3d6196843c6c93337443
container_end_page 71303
container_issue
container_start_page 71286
container_title IEEE access
container_volume 12
creator Zhaksylyk, Assel
Polat, Hakan
Jaman, Shahid
Geury, Thomas
Hegazy, Omar
description This paper presents a design optimization for grid-connected modular Active Front-End (AFE) rectifiers with an evaluation of efficiency, lifetime, cost, volume, and weight. This tool optimizes the rectifier switching frequency, component sizing and selection, and the number of parallel converters by designing and evaluating every possible configuration of the AFE rectifier system defined by the end user. The design of the LCL filter, magnetic design of inductors, selection of the inductor core and winding, and selection of SiC switches and MLC capacitors are discussed. Rapid Low-Fidelity (Lo-Fi) electro-thermal and lifetime models that are fast enough to be used in an optimization process have been developed. The rapid Lo-Fi models estimate component losses, temperatures, and lifetime for given load profiles and converter configurations. This Lo-Fi approach accelerates the processing time to generate the thermal data for the converter mission profile and allows us to skip rainflow-counting algorithm to assess the accumulated thermal damage to the SiC switches at the design and development stage. This in turn allows engineers to design converters with a longer predicted lifetime. Moreover, optimization of the grid-side three-phase LCL filter is performed considering efficiency, cost, and volume trade-off between the grid-side and converter-side inductors to achieve up to 50% decrease in losses, and 23% decrease in cost. Moreover, a 21-22% decrease in the system losses, 23-27% decrease in system cost, and tenfold improvement of the system lifetime can be achieved by optimizing the converter switching frequency and number of parallel modules. A 15 kW hardware prototype consisting of three 5 kW AFE rectifier modules is built and used to validate the efficiency from the fast Lo-Fi models. The validation of the detailed loss model and junction temperature swing is performed against a High-Fidelity (Hi-Fi) simulation in MATLAB Simulink environment.
doi_str_mv 10.1109/ACCESS.2024.3402731
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10534784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10534784</ieee_id><doaj_id>oai_doaj_org_article_ccdd178dd2944d9eb2c9df7572638d14</doaj_id><sourcerecordid>3061459185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-58b71df8f34a5342bd107079c0d1e36200e0f0b30aafd3d6196843c6c93337443</originalsourceid><addsrcrecordid>eNpNkdFu2yAUhq1pk1Z1fYL1Amm3cwYGG3OZeelaKVOqplMvEYZDSuSaDIiq7Dn2wMNzNZUb4Od8_-HoL4qPBC8IweLLsutW2-2iwhVbUIYrTsmb4qwijShpTZu3r87vi4sY9zivNks1Pyv-LLWGAYJKYNDaWUjuCdAPb2Aov6qYxW8Q3W5Em0N-cb9Vcn5E2zQBuxN6cOkRrax12sGoT5_RHQxO9W5wKV_UaFDnY0L3QRkoN9Yi6wO6drvH8tY_Q5gaHQcV0PJqlVGdnHUQ4ofinVVDhIuX_bz4ebW6767L9eb7Tbdcl5rWIpV123NibGspUzVlVW8I5pgLjQ0B2lQYA7a4p1gpa6hpiGhaRnWjBaWUM0bPi5vZ13i1l4fgnlQ4Sa-c_Cf4sJMqJKcHkFobQ3hrTCUYMwL6Sgtjec2rhraGTF6fZq9D8L-OEJPc-2MY8_clxQ1htSBtnavoXKWDjzGA_d-VYDmlKec05ZSmfEkzU5cz5QDgFZGH5nmiv_tGmxY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061459185</pqid></control><display><type>article</type><title>Accelerated Lifetime Model-Based Design Optimization Strategy With Efficiency, Reliability, and Cost Trade-Off for High-Power Modular AFE Rectifiers</title><source>IEEE Xplore Open Access Journals</source><creator>Zhaksylyk, Assel ; Polat, Hakan ; Jaman, Shahid ; Geury, Thomas ; Hegazy, Omar</creator><creatorcontrib>Zhaksylyk, Assel ; Polat, Hakan ; Jaman, Shahid ; Geury, Thomas ; Hegazy, Omar</creatorcontrib><description>This paper presents a design optimization for grid-connected modular Active Front-End (AFE) rectifiers with an evaluation of efficiency, lifetime, cost, volume, and weight. This tool optimizes the rectifier switching frequency, component sizing and selection, and the number of parallel converters by designing and evaluating every possible configuration of the AFE rectifier system defined by the end user. The design of the LCL filter, magnetic design of inductors, selection of the inductor core and winding, and selection of SiC switches and MLC capacitors are discussed. Rapid Low-Fidelity (Lo-Fi) electro-thermal and lifetime models that are fast enough to be used in an optimization process have been developed. The rapid Lo-Fi models estimate component losses, temperatures, and lifetime for given load profiles and converter configurations. This Lo-Fi approach accelerates the processing time to generate the thermal data for the converter mission profile and allows us to skip rainflow-counting algorithm to assess the accumulated thermal damage to the SiC switches at the design and development stage. This in turn allows engineers to design converters with a longer predicted lifetime. Moreover, optimization of the grid-side three-phase LCL filter is performed considering efficiency, cost, and volume trade-off between the grid-side and converter-side inductors to achieve up to 50% decrease in losses, and 23% decrease in cost. Moreover, a 21-22% decrease in the system losses, 23-27% decrease in system cost, and tenfold improvement of the system lifetime can be achieved by optimizing the converter switching frequency and number of parallel modules. A 15 kW hardware prototype consisting of three 5 kW AFE rectifier modules is built and used to validate the efficiency from the fast Lo-Fi models. The validation of the detailed loss model and junction temperature swing is performed against a High-Fidelity (Hi-Fi) simulation in MATLAB Simulink environment.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3402731</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Active front-end rectifier ; Algorithms ; Capacitors ; Configurations ; Costs ; Damage accumulation ; Design optimization ; Efficiency ; Inductors ; LCL design ; lifetime model ; Load modeling ; modular ; Modules ; Optimization ; parallel converters ; rapid electro-thermal model ; Rectifiers ; Service life assessment ; Switches ; Switching ; Tradeoffs ; Voltage</subject><ispartof>IEEE access, 2024, Vol.12, p.71286-71303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-58b71df8f34a5342bd107079c0d1e36200e0f0b30aafd3d6196843c6c93337443</cites><orcidid>0000-0002-8475-0305 ; 0000-0002-8667-6268 ; 0000-0002-8650-7341 ; 0000-0002-1745-0644 ; 0000-0001-7989-8113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10534784$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Zhaksylyk, Assel</creatorcontrib><creatorcontrib>Polat, Hakan</creatorcontrib><creatorcontrib>Jaman, Shahid</creatorcontrib><creatorcontrib>Geury, Thomas</creatorcontrib><creatorcontrib>Hegazy, Omar</creatorcontrib><title>Accelerated Lifetime Model-Based Design Optimization Strategy With Efficiency, Reliability, and Cost Trade-Off for High-Power Modular AFE Rectifiers</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a design optimization for grid-connected modular Active Front-End (AFE) rectifiers with an evaluation of efficiency, lifetime, cost, volume, and weight. This tool optimizes the rectifier switching frequency, component sizing and selection, and the number of parallel converters by designing and evaluating every possible configuration of the AFE rectifier system defined by the end user. The design of the LCL filter, magnetic design of inductors, selection of the inductor core and winding, and selection of SiC switches and MLC capacitors are discussed. Rapid Low-Fidelity (Lo-Fi) electro-thermal and lifetime models that are fast enough to be used in an optimization process have been developed. The rapid Lo-Fi models estimate component losses, temperatures, and lifetime for given load profiles and converter configurations. This Lo-Fi approach accelerates the processing time to generate the thermal data for the converter mission profile and allows us to skip rainflow-counting algorithm to assess the accumulated thermal damage to the SiC switches at the design and development stage. This in turn allows engineers to design converters with a longer predicted lifetime. Moreover, optimization of the grid-side three-phase LCL filter is performed considering efficiency, cost, and volume trade-off between the grid-side and converter-side inductors to achieve up to 50% decrease in losses, and 23% decrease in cost. Moreover, a 21-22% decrease in the system losses, 23-27% decrease in system cost, and tenfold improvement of the system lifetime can be achieved by optimizing the converter switching frequency and number of parallel modules. A 15 kW hardware prototype consisting of three 5 kW AFE rectifier modules is built and used to validate the efficiency from the fast Lo-Fi models. The validation of the detailed loss model and junction temperature swing is performed against a High-Fidelity (Hi-Fi) simulation in MATLAB Simulink environment.</description><subject>Accuracy</subject><subject>Active front-end rectifier</subject><subject>Algorithms</subject><subject>Capacitors</subject><subject>Configurations</subject><subject>Costs</subject><subject>Damage accumulation</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Inductors</subject><subject>LCL design</subject><subject>lifetime model</subject><subject>Load modeling</subject><subject>modular</subject><subject>Modules</subject><subject>Optimization</subject><subject>parallel converters</subject><subject>rapid electro-thermal model</subject><subject>Rectifiers</subject><subject>Service life assessment</subject><subject>Switches</subject><subject>Switching</subject><subject>Tradeoffs</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdFu2yAUhq1pk1Z1fYL1Amm3cwYGG3OZeelaKVOqplMvEYZDSuSaDIiq7Dn2wMNzNZUb4Od8_-HoL4qPBC8IweLLsutW2-2iwhVbUIYrTsmb4qwijShpTZu3r87vi4sY9zivNks1Pyv-LLWGAYJKYNDaWUjuCdAPb2Aov6qYxW8Q3W5Em0N-cb9Vcn5E2zQBuxN6cOkRrax12sGoT5_RHQxO9W5wKV_UaFDnY0L3QRkoN9Yi6wO6drvH8tY_Q5gaHQcV0PJqlVGdnHUQ4ofinVVDhIuX_bz4ebW6767L9eb7Tbdcl5rWIpV123NibGspUzVlVW8I5pgLjQ0B2lQYA7a4p1gpa6hpiGhaRnWjBaWUM0bPi5vZ13i1l4fgnlQ4Sa-c_Cf4sJMqJKcHkFobQ3hrTCUYMwL6Sgtjec2rhraGTF6fZq9D8L-OEJPc-2MY8_clxQ1htSBtnavoXKWDjzGA_d-VYDmlKec05ZSmfEkzU5cz5QDgFZGH5nmiv_tGmxY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhaksylyk, Assel</creator><creator>Polat, Hakan</creator><creator>Jaman, Shahid</creator><creator>Geury, Thomas</creator><creator>Hegazy, Omar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8475-0305</orcidid><orcidid>https://orcid.org/0000-0002-8667-6268</orcidid><orcidid>https://orcid.org/0000-0002-8650-7341</orcidid><orcidid>https://orcid.org/0000-0002-1745-0644</orcidid><orcidid>https://orcid.org/0000-0001-7989-8113</orcidid></search><sort><creationdate>2024</creationdate><title>Accelerated Lifetime Model-Based Design Optimization Strategy With Efficiency, Reliability, and Cost Trade-Off for High-Power Modular AFE Rectifiers</title><author>Zhaksylyk, Assel ; Polat, Hakan ; Jaman, Shahid ; Geury, Thomas ; Hegazy, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-58b71df8f34a5342bd107079c0d1e36200e0f0b30aafd3d6196843c6c93337443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Active front-end rectifier</topic><topic>Algorithms</topic><topic>Capacitors</topic><topic>Configurations</topic><topic>Costs</topic><topic>Damage accumulation</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Inductors</topic><topic>LCL design</topic><topic>lifetime model</topic><topic>Load modeling</topic><topic>modular</topic><topic>Modules</topic><topic>Optimization</topic><topic>parallel converters</topic><topic>rapid electro-thermal model</topic><topic>Rectifiers</topic><topic>Service life assessment</topic><topic>Switches</topic><topic>Switching</topic><topic>Tradeoffs</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhaksylyk, Assel</creatorcontrib><creatorcontrib>Polat, Hakan</creatorcontrib><creatorcontrib>Jaman, Shahid</creatorcontrib><creatorcontrib>Geury, Thomas</creatorcontrib><creatorcontrib>Hegazy, Omar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhaksylyk, Assel</au><au>Polat, Hakan</au><au>Jaman, Shahid</au><au>Geury, Thomas</au><au>Hegazy, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Lifetime Model-Based Design Optimization Strategy With Efficiency, Reliability, and Cost Trade-Off for High-Power Modular AFE Rectifiers</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>71286</spage><epage>71303</epage><pages>71286-71303</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a design optimization for grid-connected modular Active Front-End (AFE) rectifiers with an evaluation of efficiency, lifetime, cost, volume, and weight. This tool optimizes the rectifier switching frequency, component sizing and selection, and the number of parallel converters by designing and evaluating every possible configuration of the AFE rectifier system defined by the end user. The design of the LCL filter, magnetic design of inductors, selection of the inductor core and winding, and selection of SiC switches and MLC capacitors are discussed. Rapid Low-Fidelity (Lo-Fi) electro-thermal and lifetime models that are fast enough to be used in an optimization process have been developed. The rapid Lo-Fi models estimate component losses, temperatures, and lifetime for given load profiles and converter configurations. This Lo-Fi approach accelerates the processing time to generate the thermal data for the converter mission profile and allows us to skip rainflow-counting algorithm to assess the accumulated thermal damage to the SiC switches at the design and development stage. This in turn allows engineers to design converters with a longer predicted lifetime. Moreover, optimization of the grid-side three-phase LCL filter is performed considering efficiency, cost, and volume trade-off between the grid-side and converter-side inductors to achieve up to 50% decrease in losses, and 23% decrease in cost. Moreover, a 21-22% decrease in the system losses, 23-27% decrease in system cost, and tenfold improvement of the system lifetime can be achieved by optimizing the converter switching frequency and number of parallel modules. A 15 kW hardware prototype consisting of three 5 kW AFE rectifier modules is built and used to validate the efficiency from the fast Lo-Fi models. The validation of the detailed loss model and junction temperature swing is performed against a High-Fidelity (Hi-Fi) simulation in MATLAB Simulink environment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3402731</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8475-0305</orcidid><orcidid>https://orcid.org/0000-0002-8667-6268</orcidid><orcidid>https://orcid.org/0000-0002-8650-7341</orcidid><orcidid>https://orcid.org/0000-0002-1745-0644</orcidid><orcidid>https://orcid.org/0000-0001-7989-8113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.71286-71303
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10534784
source IEEE Xplore Open Access Journals
subjects Accuracy
Active front-end rectifier
Algorithms
Capacitors
Configurations
Costs
Damage accumulation
Design optimization
Efficiency
Inductors
LCL design
lifetime model
Load modeling
modular
Modules
Optimization
parallel converters
rapid electro-thermal model
Rectifiers
Service life assessment
Switches
Switching
Tradeoffs
Voltage
title Accelerated Lifetime Model-Based Design Optimization Strategy With Efficiency, Reliability, and Cost Trade-Off for High-Power Modular AFE Rectifiers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Lifetime%20Model-Based%20Design%20Optimization%20Strategy%20With%20Efficiency,%20Reliability,%20and%20Cost%20Trade-Off%20for%20High-Power%20Modular%20AFE%20Rectifiers&rft.jtitle=IEEE%20access&rft.au=Zhaksylyk,%20Assel&rft.date=2024&rft.volume=12&rft.spage=71286&rft.epage=71303&rft.pages=71286-71303&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3402731&rft_dat=%3Cproquest_ieee_%3E3061459185%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-58b71df8f34a5342bd107079c0d1e36200e0f0b30aafd3d6196843c6c93337443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3061459185&rft_id=info:pmid/&rft_ieee_id=10534784&rfr_iscdi=true