Loading…

Real-Time Validation of Enhanced Permanent Magnet Synchronous Motor Drive Using Dense-Neural-Network-Based Control

High-performance current and speed control are required to obtain smooth output torque, current tracking, and speed tracking in permanent-magnet synchronous motor (PMSM) drives. The motor speed and stator current control rely on multiple nonlinear motor parameters, which play a crucial role in shapi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.73323-73339
Main Authors: Fatemimoghadam, Armita, Varaha Iyer, Lakshmi, Kar, Narayan C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-7c5c584d4756b9d9a70938840afcea7b58d3dc0e8b15c6409059cc54492001963
container_end_page 73339
container_issue
container_start_page 73323
container_title IEEE access
container_volume 12
creator Fatemimoghadam, Armita
Varaha Iyer, Lakshmi
Kar, Narayan C.
description High-performance current and speed control are required to obtain smooth output torque, current tracking, and speed tracking in permanent-magnet synchronous motor (PMSM) drives. The motor speed and stator current control rely on multiple nonlinear motor parameters, which play a crucial role in shaping the performance of PMSM. Moreover, tuning the speed and current controller parameters using the conventional control technique depends on these PMSM parameters, also variation of these parameters will have a decisive influence on the dynamic performance of PMSM. To enhance the robustness of vector control and tracking methodology against PMSM parameter uncertainties and load disturbances, a novel artificial intelligence (AI)-based advanced speed and current control technique for PMSM is proposed in this article. Subsequently, the methodology for designing and training the suggested Dense Neural Network (DNN) controllers are elicited. The proposed controllers can handle the inevitable fluctuation and non-linearity in motor parameters at different load points and drive conditions. The proposed DNN scheme is validated in terms of settling time, dynamic responsiveness, tolerance to parameter fluctuations, and overall robustness. A comparative analysis is conducted against adaptive proportional-integral (API) control applied to the same PMSM within the OPAL-RT real-time simulator (RTS). The viability of the proposed control scheme is substantiated through simulation, Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL) testing with an RTS and an automotive-grade controller board across diverse conditions.
doi_str_mv 10.1109/ACCESS.2024.3403071
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10534796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10534796</ieee_id><doaj_id>oai_doaj_org_article_aa34abfe0bfc4e4b85390566839764ea</doaj_id><sourcerecordid>3062737178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7c5c584d4756b9d9a70938840afcea7b58d3dc0e8b15c6409059cc54492001963</originalsourceid><addsrcrecordid>eNpNkU1v1DAQhiNEJarSXwAHS5yz2LEd28eSLlCpH4htuVoTZ7LNkrWL7QX13-OSCnUuMxrN-8yM3qp6x-iKMWo-nnXderNZNbQRKy4op4q9qo4b1pqaS96-flG_qU5T2tESurSkOq7id4S5vp32SH7APA2Qp-BJGMna34N3OJBvGPfg0WdyBVuPmWwevbuPwYdDIlchh0jO4_QbyV2a_Jaco09YX-MhFu415j8h_qw_QSqkLvgcw_y2OhphTnj6nE-qu8_r2-5rfXnz5aI7u6wdlybXykkntRiEkm1vBgOKGq61oDA6BNVLPfDBUdQ9k64V1FBpnJNCmIZSZlp-Ul0s3CHAzj7EaQ_x0QaY7L9GiFsLMU9uRgvABfQj0n50AkWvJS-4ttXcqFYgFNaHhfUQw68Dpmx34RB9Od9y2jaKK6Z0meLLlIshpYjj_62M2iev7OKVffLKPntVVO8X1YSILxSSC1Xe-AtDx4-p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062737178</pqid></control><display><type>article</type><title>Real-Time Validation of Enhanced Permanent Magnet Synchronous Motor Drive Using Dense-Neural-Network-Based Control</title><source>IEEE Xplore Open Access Journals</source><creator>Fatemimoghadam, Armita ; Varaha Iyer, Lakshmi ; Kar, Narayan C.</creator><creatorcontrib>Fatemimoghadam, Armita ; Varaha Iyer, Lakshmi ; Kar, Narayan C.</creatorcontrib><description>High-performance current and speed control are required to obtain smooth output torque, current tracking, and speed tracking in permanent-magnet synchronous motor (PMSM) drives. The motor speed and stator current control rely on multiple nonlinear motor parameters, which play a crucial role in shaping the performance of PMSM. Moreover, tuning the speed and current controller parameters using the conventional control technique depends on these PMSM parameters, also variation of these parameters will have a decisive influence on the dynamic performance of PMSM. To enhance the robustness of vector control and tracking methodology against PMSM parameter uncertainties and load disturbances, a novel artificial intelligence (AI)-based advanced speed and current control technique for PMSM is proposed in this article. Subsequently, the methodology for designing and training the suggested Dense Neural Network (DNN) controllers are elicited. The proposed controllers can handle the inevitable fluctuation and non-linearity in motor parameters at different load points and drive conditions. The proposed DNN scheme is validated in terms of settling time, dynamic responsiveness, tolerance to parameter fluctuations, and overall robustness. A comparative analysis is conducted against adaptive proportional-integral (API) control applied to the same PMSM within the OPAL-RT real-time simulator (RTS). The viability of the proposed control scheme is substantiated through simulation, Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL) testing with an RTS and an automotive-grade controller board across diverse conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3403071</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Artificial intelligence ; Artificial neural networks ; Computational efficiency ; Computational modeling ; Controllers ; Dense neural network ; Directional control ; hardware-in-the-loop ; Hardware-in-the-loop simulation ; Mathematical models ; motor drive ; Neural networks ; Parameter uncertainty ; permanent magnet synchronous motor ; Permanent magnets ; Proportional integral ; Real time ; Real-time systems ; Robust control ; software-in-the-loop ; Speed control ; Synchronous motors ; Tracking control ; Training ; vector control ; Vehicle dynamics</subject><ispartof>IEEE access, 2024, Vol.12, p.73323-73339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7c5c584d4756b9d9a70938840afcea7b58d3dc0e8b15c6409059cc54492001963</cites><orcidid>0000-0002-4082-1888 ; 0000-0003-3281-2815 ; 0000-0002-4921-9738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10534796$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Fatemimoghadam, Armita</creatorcontrib><creatorcontrib>Varaha Iyer, Lakshmi</creatorcontrib><creatorcontrib>Kar, Narayan C.</creatorcontrib><title>Real-Time Validation of Enhanced Permanent Magnet Synchronous Motor Drive Using Dense-Neural-Network-Based Control</title><title>IEEE access</title><addtitle>Access</addtitle><description>High-performance current and speed control are required to obtain smooth output torque, current tracking, and speed tracking in permanent-magnet synchronous motor (PMSM) drives. The motor speed and stator current control rely on multiple nonlinear motor parameters, which play a crucial role in shaping the performance of PMSM. Moreover, tuning the speed and current controller parameters using the conventional control technique depends on these PMSM parameters, also variation of these parameters will have a decisive influence on the dynamic performance of PMSM. To enhance the robustness of vector control and tracking methodology against PMSM parameter uncertainties and load disturbances, a novel artificial intelligence (AI)-based advanced speed and current control technique for PMSM is proposed in this article. Subsequently, the methodology for designing and training the suggested Dense Neural Network (DNN) controllers are elicited. The proposed controllers can handle the inevitable fluctuation and non-linearity in motor parameters at different load points and drive conditions. The proposed DNN scheme is validated in terms of settling time, dynamic responsiveness, tolerance to parameter fluctuations, and overall robustness. A comparative analysis is conducted against adaptive proportional-integral (API) control applied to the same PMSM within the OPAL-RT real-time simulator (RTS). The viability of the proposed control scheme is substantiated through simulation, Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL) testing with an RTS and an automotive-grade controller board across diverse conditions.</description><subject>Adaptive control</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Controllers</subject><subject>Dense neural network</subject><subject>Directional control</subject><subject>hardware-in-the-loop</subject><subject>Hardware-in-the-loop simulation</subject><subject>Mathematical models</subject><subject>motor drive</subject><subject>Neural networks</subject><subject>Parameter uncertainty</subject><subject>permanent magnet synchronous motor</subject><subject>Permanent magnets</subject><subject>Proportional integral</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Robust control</subject><subject>software-in-the-loop</subject><subject>Speed control</subject><subject>Synchronous motors</subject><subject>Tracking control</subject><subject>Training</subject><subject>vector control</subject><subject>Vehicle dynamics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1v1DAQhiNEJarSXwAHS5yz2LEd28eSLlCpH4htuVoTZ7LNkrWL7QX13-OSCnUuMxrN-8yM3qp6x-iKMWo-nnXderNZNbQRKy4op4q9qo4b1pqaS96-flG_qU5T2tESurSkOq7id4S5vp32SH7APA2Qp-BJGMna34N3OJBvGPfg0WdyBVuPmWwevbuPwYdDIlchh0jO4_QbyV2a_Jaco09YX-MhFu415j8h_qw_QSqkLvgcw_y2OhphTnj6nE-qu8_r2-5rfXnz5aI7u6wdlybXykkntRiEkm1vBgOKGq61oDA6BNVLPfDBUdQ9k64V1FBpnJNCmIZSZlp-Ul0s3CHAzj7EaQ_x0QaY7L9GiFsLMU9uRgvABfQj0n50AkWvJS-4ttXcqFYgFNaHhfUQw68Dpmx34RB9Od9y2jaKK6Z0meLLlIshpYjj_62M2iev7OKVffLKPntVVO8X1YSILxSSC1Xe-AtDx4-p</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fatemimoghadam, Armita</creator><creator>Varaha Iyer, Lakshmi</creator><creator>Kar, Narayan C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4082-1888</orcidid><orcidid>https://orcid.org/0000-0003-3281-2815</orcidid><orcidid>https://orcid.org/0000-0002-4921-9738</orcidid></search><sort><creationdate>2024</creationdate><title>Real-Time Validation of Enhanced Permanent Magnet Synchronous Motor Drive Using Dense-Neural-Network-Based Control</title><author>Fatemimoghadam, Armita ; Varaha Iyer, Lakshmi ; Kar, Narayan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7c5c584d4756b9d9a70938840afcea7b58d3dc0e8b15c6409059cc54492001963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Controllers</topic><topic>Dense neural network</topic><topic>Directional control</topic><topic>hardware-in-the-loop</topic><topic>Hardware-in-the-loop simulation</topic><topic>Mathematical models</topic><topic>motor drive</topic><topic>Neural networks</topic><topic>Parameter uncertainty</topic><topic>permanent magnet synchronous motor</topic><topic>Permanent magnets</topic><topic>Proportional integral</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Robust control</topic><topic>software-in-the-loop</topic><topic>Speed control</topic><topic>Synchronous motors</topic><topic>Tracking control</topic><topic>Training</topic><topic>vector control</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatemimoghadam, Armita</creatorcontrib><creatorcontrib>Varaha Iyer, Lakshmi</creatorcontrib><creatorcontrib>Kar, Narayan C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatemimoghadam, Armita</au><au>Varaha Iyer, Lakshmi</au><au>Kar, Narayan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Validation of Enhanced Permanent Magnet Synchronous Motor Drive Using Dense-Neural-Network-Based Control</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>73323</spage><epage>73339</epage><pages>73323-73339</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>High-performance current and speed control are required to obtain smooth output torque, current tracking, and speed tracking in permanent-magnet synchronous motor (PMSM) drives. The motor speed and stator current control rely on multiple nonlinear motor parameters, which play a crucial role in shaping the performance of PMSM. Moreover, tuning the speed and current controller parameters using the conventional control technique depends on these PMSM parameters, also variation of these parameters will have a decisive influence on the dynamic performance of PMSM. To enhance the robustness of vector control and tracking methodology against PMSM parameter uncertainties and load disturbances, a novel artificial intelligence (AI)-based advanced speed and current control technique for PMSM is proposed in this article. Subsequently, the methodology for designing and training the suggested Dense Neural Network (DNN) controllers are elicited. The proposed controllers can handle the inevitable fluctuation and non-linearity in motor parameters at different load points and drive conditions. The proposed DNN scheme is validated in terms of settling time, dynamic responsiveness, tolerance to parameter fluctuations, and overall robustness. A comparative analysis is conducted against adaptive proportional-integral (API) control applied to the same PMSM within the OPAL-RT real-time simulator (RTS). The viability of the proposed control scheme is substantiated through simulation, Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL) testing with an RTS and an automotive-grade controller board across diverse conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3403071</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4082-1888</orcidid><orcidid>https://orcid.org/0000-0003-3281-2815</orcidid><orcidid>https://orcid.org/0000-0002-4921-9738</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.73323-73339
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10534796
source IEEE Xplore Open Access Journals
subjects Adaptive control
Artificial intelligence
Artificial neural networks
Computational efficiency
Computational modeling
Controllers
Dense neural network
Directional control
hardware-in-the-loop
Hardware-in-the-loop simulation
Mathematical models
motor drive
Neural networks
Parameter uncertainty
permanent magnet synchronous motor
Permanent magnets
Proportional integral
Real time
Real-time systems
Robust control
software-in-the-loop
Speed control
Synchronous motors
Tracking control
Training
vector control
Vehicle dynamics
title Real-Time Validation of Enhanced Permanent Magnet Synchronous Motor Drive Using Dense-Neural-Network-Based Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Validation%20of%20Enhanced%20Permanent%20Magnet%20Synchronous%20Motor%20Drive%20Using%20Dense-Neural-Network-Based%20Control&rft.jtitle=IEEE%20access&rft.au=Fatemimoghadam,%20Armita&rft.date=2024&rft.volume=12&rft.spage=73323&rft.epage=73339&rft.pages=73323-73339&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3403071&rft_dat=%3Cproquest_ieee_%3E3062737178%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-7c5c584d4756b9d9a70938840afcea7b58d3dc0e8b15c6409059cc54492001963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062737178&rft_id=info:pmid/&rft_ieee_id=10534796&rfr_iscdi=true