Loading…
A Filtering Model for Evidence Gathering in an SDN-Oriented Digital Forensic and Incident Response Context
Software-defined networking (SDN) architecture enables flexible and centralized network management from the controller, making it increasingly attractive in deploying telecommunications services. However, despite the many benefits of SDN, the vulnerabilities inherent in its architecture must be cons...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.75792-75808 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-2a01e1a230c3cf2cbd6a0c3f5d9683015545fb03973325811afbce32f6d8eba13 |
container_end_page | 75808 |
container_issue | |
container_start_page | 75792 |
container_title | IEEE access |
container_volume | 12 |
creator | Jimenez, Maria B. Fernandez, David Eduardo Rivadeneira, Jorge Flores-Moyano, Ricardo |
description | Software-defined networking (SDN) architecture enables flexible and centralized network management from the controller, making it increasingly attractive in deploying telecommunications services. However, despite the many benefits of SDN, the vulnerabilities inherent in its architecture must be considered, and potential attacks must be discarded. When this occurs, not only the technical areas are interested in the source of the problem, but also the organizational areas, since attacks can violate terms of service and lead to legal actions. Despite the shared interest in cybersecurity event information, forensics and incident response processes often operate independently, impacting the root cause determination. Considering this concern, an architectural evolution for digital forensics and incident response (DFIR) management is introduced. This paper presents an event filtering model that serves as a trigger for initialing the DFIR process, which involves the detection of unusual traffic and unexpected behavior of SDN elements. The proposal applies artificial intelligence technology and showcases the performance of the model and the presentation of a proprietary dataset obtained from OpenFlow traffic. |
doi_str_mv | 10.1109/ACCESS.2024.3405588 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10539103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10539103</ieee_id><doaj_id>oai_doaj_org_article_184a80aa21244d3eb87ca2d22dd4016b</doaj_id><sourcerecordid>3062738150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-2a01e1a230c3cf2cbd6a0c3f5d9683015545fb03973325811afbce32f6d8eba13</originalsourceid><addsrcrecordid>eNpNUcFqGzEQXUoLDWm-oD0Icl5H0qzW2qPZ2KkhTaBuz0IrzboyW8mVlJD-feRsCJnLDG_eezPwquorowvGaHe16vv1brfglDcLaKgQUn6ozjhruxoEtB_fzZ-ri5QOtJQskFieVYcV2bgpY3R-T34EixMZQyTrR2fRGyQ3Ov-Zl84T7cnu-q6-jw59Rkuu3d5lPZFNiOiTM4VgydabkzaTn5iOwSckfSjsp_yl-jTqKeHFaz-vfm_Wv_rv9e39zbZf3daGyy7XXFOGTHOgBszIzWBbXcZR2K6VQJkQjRgHCt0SgAvJmB4Hg8DH1kocNIPzajv72qAP6hjdXx3_q6CdegFC3CsdszMTKiYbLanWnPGmsYCDXBrNLefWNpS1Q_G6nL2OMfx7wJTVITxEX95XQFu-BMkELSyYWSaGlCKOb1cZVaeM1JyROmWkXjMqqm-zyiHiO4WAjlGAZzwLjEc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062738150</pqid></control><display><type>article</type><title>A Filtering Model for Evidence Gathering in an SDN-Oriented Digital Forensic and Incident Response Context</title><source>IEEE Open Access Journals</source><creator>Jimenez, Maria B. ; Fernandez, David ; Eduardo Rivadeneira, Jorge ; Flores-Moyano, Ricardo</creator><creatorcontrib>Jimenez, Maria B. ; Fernandez, David ; Eduardo Rivadeneira, Jorge ; Flores-Moyano, Ricardo</creatorcontrib><description>Software-defined networking (SDN) architecture enables flexible and centralized network management from the controller, making it increasingly attractive in deploying telecommunications services. However, despite the many benefits of SDN, the vulnerabilities inherent in its architecture must be considered, and potential attacks must be discarded. When this occurs, not only the technical areas are interested in the source of the problem, but also the organizational areas, since attacks can violate terms of service and lead to legal actions. Despite the shared interest in cybersecurity event information, forensics and incident response processes often operate independently, impacting the root cause determination. Considering this concern, an architectural evolution for digital forensics and incident response (DFIR) management is introduced. This paper presents an event filtering model that serves as a trigger for initialing the DFIR process, which involves the detection of unusual traffic and unexpected behavior of SDN elements. The proposal applies artificial intelligence technology and showcases the performance of the model and the presentation of a proprietary dataset obtained from OpenFlow traffic.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3405588</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; artificial intelligence algorithms ; Computer forensics ; Cybersecurity ; DDoS attacks ; Denial-of-service attack ; Digital forensics ; Feature extraction ; Filtering ; Filtration ; Forensic computing ; Forensic sciences ; Litigation ; Proposals ; Recurrent neural networks ; SDN attacks ; SDN cybersecurity ; SDN dataset ; SDN DFIR ; SDN forensics ; Software-defined networking ; Support vector machines</subject><ispartof>IEEE access, 2024, Vol.12, p.75792-75808</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-2a01e1a230c3cf2cbd6a0c3f5d9683015545fb03973325811afbce32f6d8eba13</cites><orcidid>0000-0002-2172-9162 ; 0000-0003-1838-9053 ; 0000-0002-4171-1939 ; 0000-0002-7785-7761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10539103$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jimenez, Maria B.</creatorcontrib><creatorcontrib>Fernandez, David</creatorcontrib><creatorcontrib>Eduardo Rivadeneira, Jorge</creatorcontrib><creatorcontrib>Flores-Moyano, Ricardo</creatorcontrib><title>A Filtering Model for Evidence Gathering in an SDN-Oriented Digital Forensic and Incident Response Context</title><title>IEEE access</title><addtitle>Access</addtitle><description>Software-defined networking (SDN) architecture enables flexible and centralized network management from the controller, making it increasingly attractive in deploying telecommunications services. However, despite the many benefits of SDN, the vulnerabilities inherent in its architecture must be considered, and potential attacks must be discarded. When this occurs, not only the technical areas are interested in the source of the problem, but also the organizational areas, since attacks can violate terms of service and lead to legal actions. Despite the shared interest in cybersecurity event information, forensics and incident response processes often operate independently, impacting the root cause determination. Considering this concern, an architectural evolution for digital forensics and incident response (DFIR) management is introduced. This paper presents an event filtering model that serves as a trigger for initialing the DFIR process, which involves the detection of unusual traffic and unexpected behavior of SDN elements. The proposal applies artificial intelligence technology and showcases the performance of the model and the presentation of a proprietary dataset obtained from OpenFlow traffic.</description><subject>Artificial intelligence</subject><subject>artificial intelligence algorithms</subject><subject>Computer forensics</subject><subject>Cybersecurity</subject><subject>DDoS attacks</subject><subject>Denial-of-service attack</subject><subject>Digital forensics</subject><subject>Feature extraction</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Forensic computing</subject><subject>Forensic sciences</subject><subject>Litigation</subject><subject>Proposals</subject><subject>Recurrent neural networks</subject><subject>SDN attacks</subject><subject>SDN cybersecurity</subject><subject>SDN dataset</subject><subject>SDN DFIR</subject><subject>SDN forensics</subject><subject>Software-defined networking</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqGzEQXUoLDWm-oD0Icl5H0qzW2qPZ2KkhTaBuz0IrzboyW8mVlJD-feRsCJnLDG_eezPwquorowvGaHe16vv1brfglDcLaKgQUn6ozjhruxoEtB_fzZ-ri5QOtJQskFieVYcV2bgpY3R-T34EixMZQyTrR2fRGyQ3Ov-Zl84T7cnu-q6-jw59Rkuu3d5lPZFNiOiTM4VgydabkzaTn5iOwSckfSjsp_yl-jTqKeHFaz-vfm_Wv_rv9e39zbZf3daGyy7XXFOGTHOgBszIzWBbXcZR2K6VQJkQjRgHCt0SgAvJmB4Hg8DH1kocNIPzajv72qAP6hjdXx3_q6CdegFC3CsdszMTKiYbLanWnPGmsYCDXBrNLefWNpS1Q_G6nL2OMfx7wJTVITxEX95XQFu-BMkELSyYWSaGlCKOb1cZVaeM1JyROmWkXjMqqm-zyiHiO4WAjlGAZzwLjEc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jimenez, Maria B.</creator><creator>Fernandez, David</creator><creator>Eduardo Rivadeneira, Jorge</creator><creator>Flores-Moyano, Ricardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2172-9162</orcidid><orcidid>https://orcid.org/0000-0003-1838-9053</orcidid><orcidid>https://orcid.org/0000-0002-4171-1939</orcidid><orcidid>https://orcid.org/0000-0002-7785-7761</orcidid></search><sort><creationdate>2024</creationdate><title>A Filtering Model for Evidence Gathering in an SDN-Oriented Digital Forensic and Incident Response Context</title><author>Jimenez, Maria B. ; Fernandez, David ; Eduardo Rivadeneira, Jorge ; Flores-Moyano, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-2a01e1a230c3cf2cbd6a0c3f5d9683015545fb03973325811afbce32f6d8eba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>artificial intelligence algorithms</topic><topic>Computer forensics</topic><topic>Cybersecurity</topic><topic>DDoS attacks</topic><topic>Denial-of-service attack</topic><topic>Digital forensics</topic><topic>Feature extraction</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Forensic computing</topic><topic>Forensic sciences</topic><topic>Litigation</topic><topic>Proposals</topic><topic>Recurrent neural networks</topic><topic>SDN attacks</topic><topic>SDN cybersecurity</topic><topic>SDN dataset</topic><topic>SDN DFIR</topic><topic>SDN forensics</topic><topic>Software-defined networking</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez, Maria B.</creatorcontrib><creatorcontrib>Fernandez, David</creatorcontrib><creatorcontrib>Eduardo Rivadeneira, Jorge</creatorcontrib><creatorcontrib>Flores-Moyano, Ricardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez, Maria B.</au><au>Fernandez, David</au><au>Eduardo Rivadeneira, Jorge</au><au>Flores-Moyano, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Filtering Model for Evidence Gathering in an SDN-Oriented Digital Forensic and Incident Response Context</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>75792</spage><epage>75808</epage><pages>75792-75808</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Software-defined networking (SDN) architecture enables flexible and centralized network management from the controller, making it increasingly attractive in deploying telecommunications services. However, despite the many benefits of SDN, the vulnerabilities inherent in its architecture must be considered, and potential attacks must be discarded. When this occurs, not only the technical areas are interested in the source of the problem, but also the organizational areas, since attacks can violate terms of service and lead to legal actions. Despite the shared interest in cybersecurity event information, forensics and incident response processes often operate independently, impacting the root cause determination. Considering this concern, an architectural evolution for digital forensics and incident response (DFIR) management is introduced. This paper presents an event filtering model that serves as a trigger for initialing the DFIR process, which involves the detection of unusual traffic and unexpected behavior of SDN elements. The proposal applies artificial intelligence technology and showcases the performance of the model and the presentation of a proprietary dataset obtained from OpenFlow traffic.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3405588</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2172-9162</orcidid><orcidid>https://orcid.org/0000-0003-1838-9053</orcidid><orcidid>https://orcid.org/0000-0002-4171-1939</orcidid><orcidid>https://orcid.org/0000-0002-7785-7761</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.75792-75808 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10539103 |
source | IEEE Open Access Journals |
subjects | Artificial intelligence artificial intelligence algorithms Computer forensics Cybersecurity DDoS attacks Denial-of-service attack Digital forensics Feature extraction Filtering Filtration Forensic computing Forensic sciences Litigation Proposals Recurrent neural networks SDN attacks SDN cybersecurity SDN dataset SDN DFIR SDN forensics Software-defined networking Support vector machines |
title | A Filtering Model for Evidence Gathering in an SDN-Oriented Digital Forensic and Incident Response Context |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Filtering%20Model%20for%20Evidence%20Gathering%20in%20an%20SDN-Oriented%20Digital%20Forensic%20and%20Incident%20Response%20Context&rft.jtitle=IEEE%20access&rft.au=Jimenez,%20Maria%20B.&rft.date=2024&rft.volume=12&rft.spage=75792&rft.epage=75808&rft.pages=75792-75808&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3405588&rft_dat=%3Cproquest_ieee_%3E3062738150%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-2a01e1a230c3cf2cbd6a0c3f5d9683015545fb03973325811afbce32f6d8eba13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062738150&rft_id=info:pmid/&rft_ieee_id=10539103&rfr_iscdi=true |