Loading…

Optimized Admittance Control for Manipulators Interacting with Unknown Environment

This paper considers the study scenario that the end-effector of a manipulator follows a desired trajectory and interacts with external environment. To maximize the interaction performance, admittance control is combined with adaptive dynamic programming (ADP). The optimal admittance parameters can...

Full description

Saved in:
Bibliographic Details
Main Authors: Kong, Haiyi, Peng, Guangzhu, Li, Guang, Yang, Chenguang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Kong, Haiyi
Peng, Guangzhu
Li, Guang
Yang, Chenguang
description This paper considers the study scenario that the end-effector of a manipulator follows a desired trajectory and interacts with external environment. To maximize the interaction performance, admittance control is combined with adaptive dynamic programming (ADP). The optimal admittance parameters can be learned online without prior knowledge of the environment. A data-driven Hybrid Iteration is employed in the ADP, which can relax the initial stabilizing requirement and at the same time has a faster convergence rate compared with Value Iteration. In addition, a more accurate environment model is considered in the system control design, where a general iterative expression is proposed to describe the varying contour of the environment. At last, simulation and experimental studies are given to verify the effectiveness of the proposed method.
doi_str_mv 10.1109/ICIT58233.2024.10540834
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10540834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540834</ieee_id><sourcerecordid>10540834</sourcerecordid><originalsourceid>FETCH-LOGICAL-i492-1d6d64ba81d3f3ccf3b96f075e2413bbfff4e9565743f7c989fa9964e6289f043</originalsourceid><addsrcrecordid>eNo1kNFKwzAYRqMgOGbfQDAv0Jrk_5s2l6NMLUwGUq9H2iYabdOSRoc-vQP16jtw4Fx8hNxwlnHO1G1d1U1eCoBMMIEZZzmyEvCMJKpQJeQMkAkpz8lKSIRUqKK8JMmyvDHGQJwsyhV52s_Rje7b9HTTjy5G7TtDq8nHMA3UToE-au_mj0HHKSy09tEE3UXnX-jRxVf67N_9dPR06z9dmPxofLwiF1YPi0n-dk2au21TPaS7_X1dbXapQyVS3steYqtL3oOFrrPQKmlZkRuBHNrWWotG5TIvEGzRqVJZrZREI8UJGcKaXP9mnTHmMAc36vB1-H8BfgDre1LK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimized Admittance Control for Manipulators Interacting with Unknown Environment</title><source>IEEE Xplore All Conference Series</source><creator>Kong, Haiyi ; Peng, Guangzhu ; Li, Guang ; Yang, Chenguang</creator><creatorcontrib>Kong, Haiyi ; Peng, Guangzhu ; Li, Guang ; Yang, Chenguang</creatorcontrib><description>This paper considers the study scenario that the end-effector of a manipulator follows a desired trajectory and interacts with external environment. To maximize the interaction performance, admittance control is combined with adaptive dynamic programming (ADP). The optimal admittance parameters can be learned online without prior knowledge of the environment. A data-driven Hybrid Iteration is employed in the ADP, which can relax the initial stabilizing requirement and at the same time has a faster convergence rate compared with Value Iteration. In addition, a more accurate environment model is considered in the system control design, where a general iterative expression is proposed to describe the varying contour of the environment. At last, simulation and experimental studies are given to verify the effectiveness of the proposed method.</description><identifier>EISSN: 2643-2978</identifier><identifier>EISBN: 9798350340266</identifier><identifier>DOI: 10.1109/ICIT58233.2024.10540834</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive admittance control ; Adaptive dynamic programming ; Control design ; Dynamic programming ; End effectors ; Environment position ; Heuristic algorithms ; Iterative methods ; Optimized admittance adaptation ; Trajectory ; Unknown environment</subject><ispartof>IEEE International Conference on Industrial Technology (Online), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10540834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong, Haiyi</creatorcontrib><creatorcontrib>Peng, Guangzhu</creatorcontrib><creatorcontrib>Li, Guang</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><title>Optimized Admittance Control for Manipulators Interacting with Unknown Environment</title><title>IEEE International Conference on Industrial Technology (Online)</title><addtitle>ICIT</addtitle><description>This paper considers the study scenario that the end-effector of a manipulator follows a desired trajectory and interacts with external environment. To maximize the interaction performance, admittance control is combined with adaptive dynamic programming (ADP). The optimal admittance parameters can be learned online without prior knowledge of the environment. A data-driven Hybrid Iteration is employed in the ADP, which can relax the initial stabilizing requirement and at the same time has a faster convergence rate compared with Value Iteration. In addition, a more accurate environment model is considered in the system control design, where a general iterative expression is proposed to describe the varying contour of the environment. At last, simulation and experimental studies are given to verify the effectiveness of the proposed method.</description><subject>Adaptation models</subject><subject>Adaptive admittance control</subject><subject>Adaptive dynamic programming</subject><subject>Control design</subject><subject>Dynamic programming</subject><subject>End effectors</subject><subject>Environment position</subject><subject>Heuristic algorithms</subject><subject>Iterative methods</subject><subject>Optimized admittance adaptation</subject><subject>Trajectory</subject><subject>Unknown environment</subject><issn>2643-2978</issn><isbn>9798350340266</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNFKwzAYRqMgOGbfQDAv0Jrk_5s2l6NMLUwGUq9H2iYabdOSRoc-vQP16jtw4Fx8hNxwlnHO1G1d1U1eCoBMMIEZZzmyEvCMJKpQJeQMkAkpz8lKSIRUqKK8JMmyvDHGQJwsyhV52s_Rje7b9HTTjy5G7TtDq8nHMA3UToE-au_mj0HHKSy09tEE3UXnX-jRxVf67N_9dPR06z9dmPxofLwiF1YPi0n-dk2au21TPaS7_X1dbXapQyVS3steYqtL3oOFrrPQKmlZkRuBHNrWWotG5TIvEGzRqVJZrZREI8UJGcKaXP9mnTHmMAc36vB1-H8BfgDre1LK</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Kong, Haiyi</creator><creator>Peng, Guangzhu</creator><creator>Li, Guang</creator><creator>Yang, Chenguang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240325</creationdate><title>Optimized Admittance Control for Manipulators Interacting with Unknown Environment</title><author>Kong, Haiyi ; Peng, Guangzhu ; Li, Guang ; Yang, Chenguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i492-1d6d64ba81d3f3ccf3b96f075e2413bbfff4e9565743f7c989fa9964e6289f043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive admittance control</topic><topic>Adaptive dynamic programming</topic><topic>Control design</topic><topic>Dynamic programming</topic><topic>End effectors</topic><topic>Environment position</topic><topic>Heuristic algorithms</topic><topic>Iterative methods</topic><topic>Optimized admittance adaptation</topic><topic>Trajectory</topic><topic>Unknown environment</topic><toplevel>online_resources</toplevel><creatorcontrib>Kong, Haiyi</creatorcontrib><creatorcontrib>Peng, Guangzhu</creatorcontrib><creatorcontrib>Li, Guang</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Haiyi</au><au>Peng, Guangzhu</au><au>Li, Guang</au><au>Yang, Chenguang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimized Admittance Control for Manipulators Interacting with Unknown Environment</atitle><btitle>IEEE International Conference on Industrial Technology (Online)</btitle><stitle>ICIT</stitle><date>2024-03-25</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2643-2978</eissn><eisbn>9798350340266</eisbn><abstract>This paper considers the study scenario that the end-effector of a manipulator follows a desired trajectory and interacts with external environment. To maximize the interaction performance, admittance control is combined with adaptive dynamic programming (ADP). The optimal admittance parameters can be learned online without prior knowledge of the environment. A data-driven Hybrid Iteration is employed in the ADP, which can relax the initial stabilizing requirement and at the same time has a faster convergence rate compared with Value Iteration. In addition, a more accurate environment model is considered in the system control design, where a general iterative expression is proposed to describe the varying contour of the environment. At last, simulation and experimental studies are given to verify the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICIT58233.2024.10540834</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2643-2978
ispartof IEEE International Conference on Industrial Technology (Online), 2024, p.1-6
issn 2643-2978
language eng
recordid cdi_ieee_primary_10540834
source IEEE Xplore All Conference Series
subjects Adaptation models
Adaptive admittance control
Adaptive dynamic programming
Control design
Dynamic programming
End effectors
Environment position
Heuristic algorithms
Iterative methods
Optimized admittance adaptation
Trajectory
Unknown environment
title Optimized Admittance Control for Manipulators Interacting with Unknown Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimized%20Admittance%20Control%20for%20Manipulators%20Interacting%20with%20Unknown%20Environment&rft.btitle=IEEE%20International%20Conference%20on%20Industrial%20Technology%20(Online)&rft.au=Kong,%20Haiyi&rft.date=2024-03-25&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2643-2978&rft_id=info:doi/10.1109/ICIT58233.2024.10540834&rft.eisbn=9798350340266&rft_dat=%3Cieee_CHZPO%3E10540834%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i492-1d6d64ba81d3f3ccf3b96f075e2413bbfff4e9565743f7c989fa9964e6289f043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10540834&rfr_iscdi=true