Loading…

Ensemble Techniques for Malicious Threat Detection

In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the probl...

Full description

Saved in:
Bibliographic Details
Main Authors: Raj, Kiran S, Tej, Krishna, S, Nithin Kumar, T, Senthil Kumar, Vajipayajula, Sulakshan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1545
container_issue
container_start_page 1543
container_title
container_volume
creator Raj, Kiran S
Tej, Krishna
S, Nithin Kumar
T, Senthil Kumar
Vajipayajula, Sulakshan
description In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the problem is done by comparing these messages with a core ruleset consisting of predefined signatures. This method is not accurate and has always fallen prey to updating the core set signatures. The project aims to develop a Machine Learning model capable of detecting these malicious messages and hence being more generalizable to detect the same. Various methods from linear, neural networks, and ensemble techniques are used to assess the difference in the performance of detecting these various malicious contents.
doi_str_mv 10.1109/ICICT60155.2024.10544694
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10544694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10544694</ieee_id><sourcerecordid>10544694</sourcerecordid><originalsourceid>FETCH-LOGICAL-i490-4953af4a630de43b4a69707b7f9df6094214eb3ddd40547cc76abee50c5305ef3</originalsourceid><addsrcrecordid>eNo1j7FOwzAURQ0SElXJHzD4BxKe7Wc7HlEoEKmIJXvlOM-qUZpAnA78PZWA6Z7p6FzGuIBKCHAPbdM2nQGhdSVBYiVAIxqHV6xw1tVKg9JOOnfNNtIaW1pb17esyPkDAJQEFBI3TO6mTKd-JN5ROE7p60yZx3nhb35MIc3nzLvjQn7lT7RSWNM83bGb6MdMxd9uWfe865rXcv_-0jaP-zKhgxKdVj6iNwoGQtVfyFmwvY1uiAYcSoHUq2EY8BJuQ7DG90QaglagKaotu__VJiI6fC7p5Jfvw_9L9QNaC0ZZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ensemble Techniques for Malicious Threat Detection</title><source>IEEE Xplore All Conference Series</source><creator>Raj, Kiran S ; Tej, Krishna ; S, Nithin Kumar ; T, Senthil Kumar ; Vajipayajula, Sulakshan</creator><creatorcontrib>Raj, Kiran S ; Tej, Krishna ; S, Nithin Kumar ; T, Senthil Kumar ; Vajipayajula, Sulakshan</creatorcontrib><description>In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the problem is done by comparing these messages with a core ruleset consisting of predefined signatures. This method is not accurate and has always fallen prey to updating the core set signatures. The project aims to develop a Machine Learning model capable of detecting these malicious messages and hence being more generalizable to detect the same. Various methods from linear, neural networks, and ensemble techniques are used to assess the difference in the performance of detecting these various malicious contents.</description><identifier>EISSN: 2767-7788</identifier><identifier>EISBN: 9798350359299</identifier><identifier>DOI: 10.1109/ICICT60155.2024.10544694</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data Visualization ; Deep Learning ; Ensemble Learning ; Exploratory Data Analysis ; Feature extraction ; Machine Learning ; Machine learning algorithms ; Manuals ; Neural networks ; Social networking (online) ; Threat assessment ; Training</subject><ispartof>2024 International Conference on Inventive Computation Technologies (ICICT), 2024, p.1543-1545</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10544694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10544694$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raj, Kiran S</creatorcontrib><creatorcontrib>Tej, Krishna</creatorcontrib><creatorcontrib>S, Nithin Kumar</creatorcontrib><creatorcontrib>T, Senthil Kumar</creatorcontrib><creatorcontrib>Vajipayajula, Sulakshan</creatorcontrib><title>Ensemble Techniques for Malicious Threat Detection</title><title>2024 International Conference on Inventive Computation Technologies (ICICT)</title><addtitle>ICICT</addtitle><description>In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the problem is done by comparing these messages with a core ruleset consisting of predefined signatures. This method is not accurate and has always fallen prey to updating the core set signatures. The project aims to develop a Machine Learning model capable of detecting these malicious messages and hence being more generalizable to detect the same. Various methods from linear, neural networks, and ensemble techniques are used to assess the difference in the performance of detecting these various malicious contents.</description><subject>Data Visualization</subject><subject>Deep Learning</subject><subject>Ensemble Learning</subject><subject>Exploratory Data Analysis</subject><subject>Feature extraction</subject><subject>Machine Learning</subject><subject>Machine learning algorithms</subject><subject>Manuals</subject><subject>Neural networks</subject><subject>Social networking (online)</subject><subject>Threat assessment</subject><subject>Training</subject><issn>2767-7788</issn><isbn>9798350359299</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j7FOwzAURQ0SElXJHzD4BxKe7Wc7HlEoEKmIJXvlOM-qUZpAnA78PZWA6Z7p6FzGuIBKCHAPbdM2nQGhdSVBYiVAIxqHV6xw1tVKg9JOOnfNNtIaW1pb17esyPkDAJQEFBI3TO6mTKd-JN5ROE7p60yZx3nhb35MIc3nzLvjQn7lT7RSWNM83bGb6MdMxd9uWfe865rXcv_-0jaP-zKhgxKdVj6iNwoGQtVfyFmwvY1uiAYcSoHUq2EY8BJuQ7DG90QaglagKaotu__VJiI6fC7p5Jfvw_9L9QNaC0ZZ</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Raj, Kiran S</creator><creator>Tej, Krishna</creator><creator>S, Nithin Kumar</creator><creator>T, Senthil Kumar</creator><creator>Vajipayajula, Sulakshan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240424</creationdate><title>Ensemble Techniques for Malicious Threat Detection</title><author>Raj, Kiran S ; Tej, Krishna ; S, Nithin Kumar ; T, Senthil Kumar ; Vajipayajula, Sulakshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i490-4953af4a630de43b4a69707b7f9df6094214eb3ddd40547cc76abee50c5305ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data Visualization</topic><topic>Deep Learning</topic><topic>Ensemble Learning</topic><topic>Exploratory Data Analysis</topic><topic>Feature extraction</topic><topic>Machine Learning</topic><topic>Machine learning algorithms</topic><topic>Manuals</topic><topic>Neural networks</topic><topic>Social networking (online)</topic><topic>Threat assessment</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Raj, Kiran S</creatorcontrib><creatorcontrib>Tej, Krishna</creatorcontrib><creatorcontrib>S, Nithin Kumar</creatorcontrib><creatorcontrib>T, Senthil Kumar</creatorcontrib><creatorcontrib>Vajipayajula, Sulakshan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raj, Kiran S</au><au>Tej, Krishna</au><au>S, Nithin Kumar</au><au>T, Senthil Kumar</au><au>Vajipayajula, Sulakshan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ensemble Techniques for Malicious Threat Detection</atitle><btitle>2024 International Conference on Inventive Computation Technologies (ICICT)</btitle><stitle>ICICT</stitle><date>2024-04-24</date><risdate>2024</risdate><spage>1543</spage><epage>1545</epage><pages>1543-1545</pages><eissn>2767-7788</eissn><eisbn>9798350359299</eisbn><abstract>In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the problem is done by comparing these messages with a core ruleset consisting of predefined signatures. This method is not accurate and has always fallen prey to updating the core set signatures. The project aims to develop a Machine Learning model capable of detecting these malicious messages and hence being more generalizable to detect the same. Various methods from linear, neural networks, and ensemble techniques are used to assess the difference in the performance of detecting these various malicious contents.</abstract><pub>IEEE</pub><doi>10.1109/ICICT60155.2024.10544694</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2767-7788
ispartof 2024 International Conference on Inventive Computation Technologies (ICICT), 2024, p.1543-1545
issn 2767-7788
language eng
recordid cdi_ieee_primary_10544694
source IEEE Xplore All Conference Series
subjects Data Visualization
Deep Learning
Ensemble Learning
Exploratory Data Analysis
Feature extraction
Machine Learning
Machine learning algorithms
Manuals
Neural networks
Social networking (online)
Threat assessment
Training
title Ensemble Techniques for Malicious Threat Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ensemble%20Techniques%20for%20Malicious%20Threat%20Detection&rft.btitle=2024%20International%20Conference%20on%20Inventive%20Computation%20Technologies%20(ICICT)&rft.au=Raj,%20Kiran%20S&rft.date=2024-04-24&rft.spage=1543&rft.epage=1545&rft.pages=1543-1545&rft.eissn=2767-7788&rft_id=info:doi/10.1109/ICICT60155.2024.10544694&rft.eisbn=9798350359299&rft_dat=%3Cieee_CHZPO%3E10544694%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i490-4953af4a630de43b4a69707b7f9df6094214eb3ddd40547cc76abee50c5305ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10544694&rfr_iscdi=true