Loading…
Ensemble Techniques for Malicious Threat Detection
In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the probl...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1545 |
container_issue | |
container_start_page | 1543 |
container_title | |
container_volume | |
creator | Raj, Kiran S Tej, Krishna S, Nithin Kumar T, Senthil Kumar Vajipayajula, Sulakshan |
description | In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the problem is done by comparing these messages with a core ruleset consisting of predefined signatures. This method is not accurate and has always fallen prey to updating the core set signatures. The project aims to develop a Machine Learning model capable of detecting these malicious messages and hence being more generalizable to detect the same. Various methods from linear, neural networks, and ensemble techniques are used to assess the difference in the performance of detecting these various malicious contents. |
doi_str_mv | 10.1109/ICICT60155.2024.10544694 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10544694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10544694</ieee_id><sourcerecordid>10544694</sourcerecordid><originalsourceid>FETCH-LOGICAL-i490-4953af4a630de43b4a69707b7f9df6094214eb3ddd40547cc76abee50c5305ef3</originalsourceid><addsrcrecordid>eNo1j7FOwzAURQ0SElXJHzD4BxKe7Wc7HlEoEKmIJXvlOM-qUZpAnA78PZWA6Z7p6FzGuIBKCHAPbdM2nQGhdSVBYiVAIxqHV6xw1tVKg9JOOnfNNtIaW1pb17esyPkDAJQEFBI3TO6mTKd-JN5ROE7p60yZx3nhb35MIc3nzLvjQn7lT7RSWNM83bGb6MdMxd9uWfe865rXcv_-0jaP-zKhgxKdVj6iNwoGQtVfyFmwvY1uiAYcSoHUq2EY8BJuQ7DG90QaglagKaotu__VJiI6fC7p5Jfvw_9L9QNaC0ZZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ensemble Techniques for Malicious Threat Detection</title><source>IEEE Xplore All Conference Series</source><creator>Raj, Kiran S ; Tej, Krishna ; S, Nithin Kumar ; T, Senthil Kumar ; Vajipayajula, Sulakshan</creator><creatorcontrib>Raj, Kiran S ; Tej, Krishna ; S, Nithin Kumar ; T, Senthil Kumar ; Vajipayajula, Sulakshan</creatorcontrib><description>In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the problem is done by comparing these messages with a core ruleset consisting of predefined signatures. This method is not accurate and has always fallen prey to updating the core set signatures. The project aims to develop a Machine Learning model capable of detecting these malicious messages and hence being more generalizable to detect the same. Various methods from linear, neural networks, and ensemble techniques are used to assess the difference in the performance of detecting these various malicious contents.</description><identifier>EISSN: 2767-7788</identifier><identifier>EISBN: 9798350359299</identifier><identifier>DOI: 10.1109/ICICT60155.2024.10544694</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data Visualization ; Deep Learning ; Ensemble Learning ; Exploratory Data Analysis ; Feature extraction ; Machine Learning ; Machine learning algorithms ; Manuals ; Neural networks ; Social networking (online) ; Threat assessment ; Training</subject><ispartof>2024 International Conference on Inventive Computation Technologies (ICICT), 2024, p.1543-1545</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10544694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10544694$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raj, Kiran S</creatorcontrib><creatorcontrib>Tej, Krishna</creatorcontrib><creatorcontrib>S, Nithin Kumar</creatorcontrib><creatorcontrib>T, Senthil Kumar</creatorcontrib><creatorcontrib>Vajipayajula, Sulakshan</creatorcontrib><title>Ensemble Techniques for Malicious Threat Detection</title><title>2024 International Conference on Inventive Computation Technologies (ICICT)</title><addtitle>ICICT</addtitle><description>In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the problem is done by comparing these messages with a core ruleset consisting of predefined signatures. This method is not accurate and has always fallen prey to updating the core set signatures. The project aims to develop a Machine Learning model capable of detecting these malicious messages and hence being more generalizable to detect the same. Various methods from linear, neural networks, and ensemble techniques are used to assess the difference in the performance of detecting these various malicious contents.</description><subject>Data Visualization</subject><subject>Deep Learning</subject><subject>Ensemble Learning</subject><subject>Exploratory Data Analysis</subject><subject>Feature extraction</subject><subject>Machine Learning</subject><subject>Machine learning algorithms</subject><subject>Manuals</subject><subject>Neural networks</subject><subject>Social networking (online)</subject><subject>Threat assessment</subject><subject>Training</subject><issn>2767-7788</issn><isbn>9798350359299</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j7FOwzAURQ0SElXJHzD4BxKe7Wc7HlEoEKmIJXvlOM-qUZpAnA78PZWA6Z7p6FzGuIBKCHAPbdM2nQGhdSVBYiVAIxqHV6xw1tVKg9JOOnfNNtIaW1pb17esyPkDAJQEFBI3TO6mTKd-JN5ROE7p60yZx3nhb35MIc3nzLvjQn7lT7RSWNM83bGb6MdMxd9uWfe865rXcv_-0jaP-zKhgxKdVj6iNwoGQtVfyFmwvY1uiAYcSoHUq2EY8BJuQ7DG90QaglagKaotu__VJiI6fC7p5Jfvw_9L9QNaC0ZZ</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Raj, Kiran S</creator><creator>Tej, Krishna</creator><creator>S, Nithin Kumar</creator><creator>T, Senthil Kumar</creator><creator>Vajipayajula, Sulakshan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240424</creationdate><title>Ensemble Techniques for Malicious Threat Detection</title><author>Raj, Kiran S ; Tej, Krishna ; S, Nithin Kumar ; T, Senthil Kumar ; Vajipayajula, Sulakshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i490-4953af4a630de43b4a69707b7f9df6094214eb3ddd40547cc76abee50c5305ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data Visualization</topic><topic>Deep Learning</topic><topic>Ensemble Learning</topic><topic>Exploratory Data Analysis</topic><topic>Feature extraction</topic><topic>Machine Learning</topic><topic>Machine learning algorithms</topic><topic>Manuals</topic><topic>Neural networks</topic><topic>Social networking (online)</topic><topic>Threat assessment</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Raj, Kiran S</creatorcontrib><creatorcontrib>Tej, Krishna</creatorcontrib><creatorcontrib>S, Nithin Kumar</creatorcontrib><creatorcontrib>T, Senthil Kumar</creatorcontrib><creatorcontrib>Vajipayajula, Sulakshan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raj, Kiran S</au><au>Tej, Krishna</au><au>S, Nithin Kumar</au><au>T, Senthil Kumar</au><au>Vajipayajula, Sulakshan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ensemble Techniques for Malicious Threat Detection</atitle><btitle>2024 International Conference on Inventive Computation Technologies (ICICT)</btitle><stitle>ICICT</stitle><date>2024-04-24</date><risdate>2024</risdate><spage>1543</spage><epage>1545</epage><pages>1543-1545</pages><eissn>2767-7788</eissn><eisbn>9798350359299</eisbn><abstract>In the world that we live in today, malware and malicious messages circulate different systems causing havoc and issues. Hence in a cyber world where social media is prevalent and API requests simultaneously flooding, malicious content is a very serious concern. The traditional approach to the problem is done by comparing these messages with a core ruleset consisting of predefined signatures. This method is not accurate and has always fallen prey to updating the core set signatures. The project aims to develop a Machine Learning model capable of detecting these malicious messages and hence being more generalizable to detect the same. Various methods from linear, neural networks, and ensemble techniques are used to assess the difference in the performance of detecting these various malicious contents.</abstract><pub>IEEE</pub><doi>10.1109/ICICT60155.2024.10544694</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2767-7788 |
ispartof | 2024 International Conference on Inventive Computation Technologies (ICICT), 2024, p.1543-1545 |
issn | 2767-7788 |
language | eng |
recordid | cdi_ieee_primary_10544694 |
source | IEEE Xplore All Conference Series |
subjects | Data Visualization Deep Learning Ensemble Learning Exploratory Data Analysis Feature extraction Machine Learning Machine learning algorithms Manuals Neural networks Social networking (online) Threat assessment Training |
title | Ensemble Techniques for Malicious Threat Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ensemble%20Techniques%20for%20Malicious%20Threat%20Detection&rft.btitle=2024%20International%20Conference%20on%20Inventive%20Computation%20Technologies%20(ICICT)&rft.au=Raj,%20Kiran%20S&rft.date=2024-04-24&rft.spage=1543&rft.epage=1545&rft.pages=1543-1545&rft.eissn=2767-7788&rft_id=info:doi/10.1109/ICICT60155.2024.10544694&rft.eisbn=9798350359299&rft_dat=%3Cieee_CHZPO%3E10544694%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i490-4953af4a630de43b4a69707b7f9df6094214eb3ddd40547cc76abee50c5305ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10544694&rfr_iscdi=true |