Loading…

A Deep Learning-based Approach for Shrimp Quality Estimation using DenseNet 121

Shrimp creates an immense significance in the global scale due to their nutritional and cultural importance. They provide plentiful supply of amino acids, vital nutrients, omega-3 fatty acids and many more. The extensive challenge of obtaining a dataset and efficiently classifying it based on the qu...

Full description

Saved in:
Bibliographic Details
Main Authors: J, Bipin Nair B, P, Akhil, N, Shashank M
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 994
container_issue
container_start_page 989
container_title
container_volume
creator J, Bipin Nair B
P, Akhil
N, Shashank M
description Shrimp creates an immense significance in the global scale due to their nutritional and cultural importance. They provide plentiful supply of amino acids, vital nutrients, omega-3 fatty acids and many more. The extensive challenge of obtaining a dataset and efficiently classifying it based on the quality remains an ongoing area of research. The manually collected dataset was expanded to increase the generalization ability of the network. The model achieved an impressive remarkable results attaining an accuracy of 95.03% during training and 98.75% on the testing dataset, highlighting its efficiency and effectiveness. The classification was performed across three categories of shrimp dataset: Fresh, Frozen and Stale shrimp images that were manually collected consisting of 5800 images in total. This work contributes to the enhancement in quality control of shrimps, benefiting industries that depends efficient classification processes.
doi_str_mv 10.1109/ICICT60155.2024.10544780
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10544780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10544780</ieee_id><sourcerecordid>10544780</sourcerecordid><originalsourceid>FETCH-LOGICAL-i492-887368bc5b41d8a328a5d172675eea33968a19dea075d695e06d66fffee344b23</originalsourceid><addsrcrecordid>eNo1kM1Kw0AURkdBsNS8gYt5gdQ7_zPLEKsGgkXMvkw6N3akTUImXfTtDairs_oOH4cQymDDGLinqqzKRgNTasOByw0DJaWxcEMyZ5wVCoRy3LlbsuJGm9wYa-9JltI3AAgOknG5IruCPiOOtEY_9bH_ylufMNBiHKfBH460Gyb6eZzieaQfF3-K85Vu0xzPfo5DTy9pmSyCPuE7zpRx9kDuOn9KmP1xTZqXbVO-5fXutSqLOo_S8dxaI7RtD6qVLFgvuPUqMMO1UYheCKetZy6gB6OCdgpBB627rkMUUrZcrMnjrzYi4n5c_vnpuv9PIH4AcdpPbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Deep Learning-based Approach for Shrimp Quality Estimation using DenseNet 121</title><source>IEEE Xplore All Conference Series</source><creator>J, Bipin Nair B ; P, Akhil ; N, Shashank M</creator><creatorcontrib>J, Bipin Nair B ; P, Akhil ; N, Shashank M</creatorcontrib><description>Shrimp creates an immense significance in the global scale due to their nutritional and cultural importance. They provide plentiful supply of amino acids, vital nutrients, omega-3 fatty acids and many more. The extensive challenge of obtaining a dataset and efficiently classifying it based on the quality remains an ongoing area of research. The manually collected dataset was expanded to increase the generalization ability of the network. The model achieved an impressive remarkable results attaining an accuracy of 95.03% during training and 98.75% on the testing dataset, highlighting its efficiency and effectiveness. The classification was performed across three categories of shrimp dataset: Fresh, Frozen and Stale shrimp images that were manually collected consisting of 5800 images in total. This work contributes to the enhancement in quality control of shrimps, benefiting industries that depends efficient classification processes.</description><identifier>EISSN: 2767-7788</identifier><identifier>EISBN: 9798350359299</identifier><identifier>DOI: 10.1109/ICICT60155.2024.10544780</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification ; Computer architecture ; DenseNet121 ; Estimation ; Industries ; Neural Network ; Process control ; Quality assessment ; Quality control ; Quality Estimation ; Shiba Shrimp ; Shrimp ; Training</subject><ispartof>2024 International Conference on Inventive Computation Technologies (ICICT), 2024, p.989-994</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10544780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10544780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>J, Bipin Nair B</creatorcontrib><creatorcontrib>P, Akhil</creatorcontrib><creatorcontrib>N, Shashank M</creatorcontrib><title>A Deep Learning-based Approach for Shrimp Quality Estimation using DenseNet 121</title><title>2024 International Conference on Inventive Computation Technologies (ICICT)</title><addtitle>ICICT</addtitle><description>Shrimp creates an immense significance in the global scale due to their nutritional and cultural importance. They provide plentiful supply of amino acids, vital nutrients, omega-3 fatty acids and many more. The extensive challenge of obtaining a dataset and efficiently classifying it based on the quality remains an ongoing area of research. The manually collected dataset was expanded to increase the generalization ability of the network. The model achieved an impressive remarkable results attaining an accuracy of 95.03% during training and 98.75% on the testing dataset, highlighting its efficiency and effectiveness. The classification was performed across three categories of shrimp dataset: Fresh, Frozen and Stale shrimp images that were manually collected consisting of 5800 images in total. This work contributes to the enhancement in quality control of shrimps, benefiting industries that depends efficient classification processes.</description><subject>Classification</subject><subject>Computer architecture</subject><subject>DenseNet121</subject><subject>Estimation</subject><subject>Industries</subject><subject>Neural Network</subject><subject>Process control</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Quality Estimation</subject><subject>Shiba Shrimp</subject><subject>Shrimp</subject><subject>Training</subject><issn>2767-7788</issn><isbn>9798350359299</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1Kw0AURkdBsNS8gYt5gdQ7_zPLEKsGgkXMvkw6N3akTUImXfTtDairs_oOH4cQymDDGLinqqzKRgNTasOByw0DJaWxcEMyZ5wVCoRy3LlbsuJGm9wYa-9JltI3AAgOknG5IruCPiOOtEY_9bH_ylufMNBiHKfBH460Gyb6eZzieaQfF3-K85Vu0xzPfo5DTy9pmSyCPuE7zpRx9kDuOn9KmP1xTZqXbVO-5fXutSqLOo_S8dxaI7RtD6qVLFgvuPUqMMO1UYheCKetZy6gB6OCdgpBB627rkMUUrZcrMnjrzYi4n5c_vnpuv9PIH4AcdpPbQ</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>J, Bipin Nair B</creator><creator>P, Akhil</creator><creator>N, Shashank M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240424</creationdate><title>A Deep Learning-based Approach for Shrimp Quality Estimation using DenseNet 121</title><author>J, Bipin Nair B ; P, Akhil ; N, Shashank M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i492-887368bc5b41d8a328a5d172675eea33968a19dea075d695e06d66fffee344b23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Computer architecture</topic><topic>DenseNet121</topic><topic>Estimation</topic><topic>Industries</topic><topic>Neural Network</topic><topic>Process control</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Quality Estimation</topic><topic>Shiba Shrimp</topic><topic>Shrimp</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>J, Bipin Nair B</creatorcontrib><creatorcontrib>P, Akhil</creatorcontrib><creatorcontrib>N, Shashank M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>J, Bipin Nair B</au><au>P, Akhil</au><au>N, Shashank M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Deep Learning-based Approach for Shrimp Quality Estimation using DenseNet 121</atitle><btitle>2024 International Conference on Inventive Computation Technologies (ICICT)</btitle><stitle>ICICT</stitle><date>2024-04-24</date><risdate>2024</risdate><spage>989</spage><epage>994</epage><pages>989-994</pages><eissn>2767-7788</eissn><eisbn>9798350359299</eisbn><abstract>Shrimp creates an immense significance in the global scale due to their nutritional and cultural importance. They provide plentiful supply of amino acids, vital nutrients, omega-3 fatty acids and many more. The extensive challenge of obtaining a dataset and efficiently classifying it based on the quality remains an ongoing area of research. The manually collected dataset was expanded to increase the generalization ability of the network. The model achieved an impressive remarkable results attaining an accuracy of 95.03% during training and 98.75% on the testing dataset, highlighting its efficiency and effectiveness. The classification was performed across three categories of shrimp dataset: Fresh, Frozen and Stale shrimp images that were manually collected consisting of 5800 images in total. This work contributes to the enhancement in quality control of shrimps, benefiting industries that depends efficient classification processes.</abstract><pub>IEEE</pub><doi>10.1109/ICICT60155.2024.10544780</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2767-7788
ispartof 2024 International Conference on Inventive Computation Technologies (ICICT), 2024, p.989-994
issn 2767-7788
language eng
recordid cdi_ieee_primary_10544780
source IEEE Xplore All Conference Series
subjects Classification
Computer architecture
DenseNet121
Estimation
Industries
Neural Network
Process control
Quality assessment
Quality control
Quality Estimation
Shiba Shrimp
Shrimp
Training
title A Deep Learning-based Approach for Shrimp Quality Estimation using DenseNet 121
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Deep%20Learning-based%20Approach%20for%20Shrimp%20Quality%20Estimation%20using%20DenseNet%20121&rft.btitle=2024%20International%20Conference%20on%20Inventive%20Computation%20Technologies%20(ICICT)&rft.au=J,%20Bipin%20Nair%20B&rft.date=2024-04-24&rft.spage=989&rft.epage=994&rft.pages=989-994&rft.eissn=2767-7788&rft_id=info:doi/10.1109/ICICT60155.2024.10544780&rft.eisbn=9798350359299&rft_dat=%3Cieee_CHZPO%3E10544780%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i492-887368bc5b41d8a328a5d172675eea33968a19dea075d695e06d66fffee344b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10544780&rfr_iscdi=true