Loading…

MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning

Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make pred...

Full description

Saved in:
Bibliographic Details
Main Authors: Gandham, Rushita, Manambakam, Keerthi Reddy, Nannapaneni, Navyasri, Enduri, Murali Krishna, Hajarathaiah, Koduru, Anamalamudi, Satish
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Gandham, Rushita
Manambakam, Keerthi Reddy
Nannapaneni, Navyasri
Enduri, Murali Krishna
Hajarathaiah, Koduru
Anamalamudi, Satish
description Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make predicting survival rates challenging. Efficient identification of cerebral abnormalities is essential for the timely and effective management of neurological conditions. Exploring the application of deep learning, this study investigates brain tumor detection using a curated dataset of Magnetic Resonance Images (MRI). Utilizing this dataset, brain tumor detection is advanced through the application of diverse models, including EfficientNetB3, ResNet50, MobileNetV3, and VGG16. The study prioritizes dataset preprocessing, emphasizing data augmentation. Diverse brain tumor images contribute to model training, incorporating transfer learning from pre-trained models on extensive datasets for discerning intricate patterns in medical images. Efficiency evaluation considers computational resources, training time, and complexity. Quantitative metrics F1 score, accuracy, recall, and precision are employed to gauge model performance in classifying the tumor and non-tumor regions. In the conducted study, VGG16 demonstrated the best performance compared to all other models.
doi_str_mv 10.1109/CSNT60213.2024.10545790
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10545790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10545790</ieee_id><sourcerecordid>10545790</sourcerecordid><originalsourceid>FETCH-LOGICAL-i497-8160cd4af706fe10a51f4f5bbee29db3f3c05c9c2a2aa0d93776fefe3c946c233</originalsourceid><addsrcrecordid>eNo1j11LwzAYRqMgOGb_gWD-QOubvPlYvNPOqVAVXO9HmiZdZGtH2yn66y2oVwceDg8cQq4YZIyBuc7XL6UCzjDjwEXGQAqpDZyQxGizQAk4LQpPyYwLjalUUp6TZBjeAQA5Y8rwGcmfY1uvY7Mdb-ib_-h2xzF2bfyObUPvehtbWh73XU-X0TZtN8SBfsZxS5feH2jhbd9O4gU5C3Y3-OSPc1Ku7sv8MS1eH57y2yKNwuh0wRS4WtigQQXPwEoWRJBV5T03dYUBHUhnHLfcWqgNaj15waMzQjmOOCeXv7fRe7859HFv-6_Nfzb-AATFTQE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning</title><source>IEEE Xplore All Conference Series</source><creator>Gandham, Rushita ; Manambakam, Keerthi Reddy ; Nannapaneni, Navyasri ; Enduri, Murali Krishna ; Hajarathaiah, Koduru ; Anamalamudi, Satish</creator><creatorcontrib>Gandham, Rushita ; Manambakam, Keerthi Reddy ; Nannapaneni, Navyasri ; Enduri, Murali Krishna ; Hajarathaiah, Koduru ; Anamalamudi, Satish</creatorcontrib><description>Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make predicting survival rates challenging. Efficient identification of cerebral abnormalities is essential for the timely and effective management of neurological conditions. Exploring the application of deep learning, this study investigates brain tumor detection using a curated dataset of Magnetic Resonance Images (MRI). Utilizing this dataset, brain tumor detection is advanced through the application of diverse models, including EfficientNetB3, ResNet50, MobileNetV3, and VGG16. The study prioritizes dataset preprocessing, emphasizing data augmentation. Diverse brain tumor images contribute to model training, incorporating transfer learning from pre-trained models on extensive datasets for discerning intricate patterns in medical images. Efficiency evaluation considers computational resources, training time, and complexity. Quantitative metrics F1 score, accuracy, recall, and precision are employed to gauge model performance in classifying the tumor and non-tumor regions. In the conducted study, VGG16 demonstrated the best performance compared to all other models.</description><identifier>EISSN: 2473-5655</identifier><identifier>EISBN: 9798350305463</identifier><identifier>DOI: 10.1109/CSNT60213.2024.10545790</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Brain Tumor Detection ; Computational Efficiency ; Computational modeling ; Deep learning ; EfficientNetB3 ; Magnetic resonance imaging ; Measurement ; MobileNetV3 ; ResNet50 ; Training ; Transfer learning ; VGG16</subject><ispartof>2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10545790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10545790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gandham, Rushita</creatorcontrib><creatorcontrib>Manambakam, Keerthi Reddy</creatorcontrib><creatorcontrib>Nannapaneni, Navyasri</creatorcontrib><creatorcontrib>Enduri, Murali Krishna</creatorcontrib><creatorcontrib>Hajarathaiah, Koduru</creatorcontrib><creatorcontrib>Anamalamudi, Satish</creatorcontrib><title>MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning</title><title>2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT)</title><addtitle>CSNT</addtitle><description>Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make predicting survival rates challenging. Efficient identification of cerebral abnormalities is essential for the timely and effective management of neurological conditions. Exploring the application of deep learning, this study investigates brain tumor detection using a curated dataset of Magnetic Resonance Images (MRI). Utilizing this dataset, brain tumor detection is advanced through the application of diverse models, including EfficientNetB3, ResNet50, MobileNetV3, and VGG16. The study prioritizes dataset preprocessing, emphasizing data augmentation. Diverse brain tumor images contribute to model training, incorporating transfer learning from pre-trained models on extensive datasets for discerning intricate patterns in medical images. Efficiency evaluation considers computational resources, training time, and complexity. Quantitative metrics F1 score, accuracy, recall, and precision are employed to gauge model performance in classifying the tumor and non-tumor regions. In the conducted study, VGG16 demonstrated the best performance compared to all other models.</description><subject>Brain modeling</subject><subject>Brain Tumor Detection</subject><subject>Computational Efficiency</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>EfficientNetB3</subject><subject>Magnetic resonance imaging</subject><subject>Measurement</subject><subject>MobileNetV3</subject><subject>ResNet50</subject><subject>Training</subject><subject>Transfer learning</subject><subject>VGG16</subject><issn>2473-5655</issn><isbn>9798350305463</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j11LwzAYRqMgOGb_gWD-QOubvPlYvNPOqVAVXO9HmiZdZGtH2yn66y2oVwceDg8cQq4YZIyBuc7XL6UCzjDjwEXGQAqpDZyQxGizQAk4LQpPyYwLjalUUp6TZBjeAQA5Y8rwGcmfY1uvY7Mdb-ib_-h2xzF2bfyObUPvehtbWh73XU-X0TZtN8SBfsZxS5feH2jhbd9O4gU5C3Y3-OSPc1Ku7sv8MS1eH57y2yKNwuh0wRS4WtigQQXPwEoWRJBV5T03dYUBHUhnHLfcWqgNaj15waMzQjmOOCeXv7fRe7859HFv-6_Nfzb-AATFTQE</recordid><startdate>20240406</startdate><enddate>20240406</enddate><creator>Gandham, Rushita</creator><creator>Manambakam, Keerthi Reddy</creator><creator>Nannapaneni, Navyasri</creator><creator>Enduri, Murali Krishna</creator><creator>Hajarathaiah, Koduru</creator><creator>Anamalamudi, Satish</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240406</creationdate><title>MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning</title><author>Gandham, Rushita ; Manambakam, Keerthi Reddy ; Nannapaneni, Navyasri ; Enduri, Murali Krishna ; Hajarathaiah, Koduru ; Anamalamudi, Satish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i497-8160cd4af706fe10a51f4f5bbee29db3f3c05c9c2a2aa0d93776fefe3c946c233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain modeling</topic><topic>Brain Tumor Detection</topic><topic>Computational Efficiency</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>EfficientNetB3</topic><topic>Magnetic resonance imaging</topic><topic>Measurement</topic><topic>MobileNetV3</topic><topic>ResNet50</topic><topic>Training</topic><topic>Transfer learning</topic><topic>VGG16</topic><toplevel>online_resources</toplevel><creatorcontrib>Gandham, Rushita</creatorcontrib><creatorcontrib>Manambakam, Keerthi Reddy</creatorcontrib><creatorcontrib>Nannapaneni, Navyasri</creatorcontrib><creatorcontrib>Enduri, Murali Krishna</creatorcontrib><creatorcontrib>Hajarathaiah, Koduru</creatorcontrib><creatorcontrib>Anamalamudi, Satish</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gandham, Rushita</au><au>Manambakam, Keerthi Reddy</au><au>Nannapaneni, Navyasri</au><au>Enduri, Murali Krishna</au><au>Hajarathaiah, Koduru</au><au>Anamalamudi, Satish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning</atitle><btitle>2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT)</btitle><stitle>CSNT</stitle><date>2024-04-06</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2473-5655</eissn><eisbn>9798350305463</eisbn><abstract>Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make predicting survival rates challenging. Efficient identification of cerebral abnormalities is essential for the timely and effective management of neurological conditions. Exploring the application of deep learning, this study investigates brain tumor detection using a curated dataset of Magnetic Resonance Images (MRI). Utilizing this dataset, brain tumor detection is advanced through the application of diverse models, including EfficientNetB3, ResNet50, MobileNetV3, and VGG16. The study prioritizes dataset preprocessing, emphasizing data augmentation. Diverse brain tumor images contribute to model training, incorporating transfer learning from pre-trained models on extensive datasets for discerning intricate patterns in medical images. Efficiency evaluation considers computational resources, training time, and complexity. Quantitative metrics F1 score, accuracy, recall, and precision are employed to gauge model performance in classifying the tumor and non-tumor regions. In the conducted study, VGG16 demonstrated the best performance compared to all other models.</abstract><pub>IEEE</pub><doi>10.1109/CSNT60213.2024.10545790</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2473-5655
ispartof 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), 2024, p.1-6
issn 2473-5655
language eng
recordid cdi_ieee_primary_10545790
source IEEE Xplore All Conference Series
subjects Brain modeling
Brain Tumor Detection
Computational Efficiency
Computational modeling
Deep learning
EfficientNetB3
Magnetic resonance imaging
Measurement
MobileNetV3
ResNet50
Training
Transfer learning
VGG16
title MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MindSight:%20Revolutionizing%20Brain%20Tumor%20Diagnosis%20with%20Deep%20Learning&rft.btitle=2024%20IEEE%2013th%20International%20Conference%20on%20Communication%20Systems%20and%20Network%20Technologies%20(CSNT)&rft.au=Gandham,%20Rushita&rft.date=2024-04-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2473-5655&rft_id=info:doi/10.1109/CSNT60213.2024.10545790&rft.eisbn=9798350305463&rft_dat=%3Cieee_CHZPO%3E10545790%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i497-8160cd4af706fe10a51f4f5bbee29db3f3c05c9c2a2aa0d93776fefe3c946c233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10545790&rfr_iscdi=true