Loading…
MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning
Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make pred...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Gandham, Rushita Manambakam, Keerthi Reddy Nannapaneni, Navyasri Enduri, Murali Krishna Hajarathaiah, Koduru Anamalamudi, Satish |
description | Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make predicting survival rates challenging. Efficient identification of cerebral abnormalities is essential for the timely and effective management of neurological conditions. Exploring the application of deep learning, this study investigates brain tumor detection using a curated dataset of Magnetic Resonance Images (MRI). Utilizing this dataset, brain tumor detection is advanced through the application of diverse models, including EfficientNetB3, ResNet50, MobileNetV3, and VGG16. The study prioritizes dataset preprocessing, emphasizing data augmentation. Diverse brain tumor images contribute to model training, incorporating transfer learning from pre-trained models on extensive datasets for discerning intricate patterns in medical images. Efficiency evaluation considers computational resources, training time, and complexity. Quantitative metrics F1 score, accuracy, recall, and precision are employed to gauge model performance in classifying the tumor and non-tumor regions. In the conducted study, VGG16 demonstrated the best performance compared to all other models. |
doi_str_mv | 10.1109/CSNT60213.2024.10545790 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10545790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10545790</ieee_id><sourcerecordid>10545790</sourcerecordid><originalsourceid>FETCH-LOGICAL-i497-8160cd4af706fe10a51f4f5bbee29db3f3c05c9c2a2aa0d93776fefe3c946c233</originalsourceid><addsrcrecordid>eNo1j11LwzAYRqMgOGb_gWD-QOubvPlYvNPOqVAVXO9HmiZdZGtH2yn66y2oVwceDg8cQq4YZIyBuc7XL6UCzjDjwEXGQAqpDZyQxGizQAk4LQpPyYwLjalUUp6TZBjeAQA5Y8rwGcmfY1uvY7Mdb-ib_-h2xzF2bfyObUPvehtbWh73XU-X0TZtN8SBfsZxS5feH2jhbd9O4gU5C3Y3-OSPc1Ku7sv8MS1eH57y2yKNwuh0wRS4WtigQQXPwEoWRJBV5T03dYUBHUhnHLfcWqgNaj15waMzQjmOOCeXv7fRe7859HFv-6_Nfzb-AATFTQE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning</title><source>IEEE Xplore All Conference Series</source><creator>Gandham, Rushita ; Manambakam, Keerthi Reddy ; Nannapaneni, Navyasri ; Enduri, Murali Krishna ; Hajarathaiah, Koduru ; Anamalamudi, Satish</creator><creatorcontrib>Gandham, Rushita ; Manambakam, Keerthi Reddy ; Nannapaneni, Navyasri ; Enduri, Murali Krishna ; Hajarathaiah, Koduru ; Anamalamudi, Satish</creatorcontrib><description>Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make predicting survival rates challenging. Efficient identification of cerebral abnormalities is essential for the timely and effective management of neurological conditions. Exploring the application of deep learning, this study investigates brain tumor detection using a curated dataset of Magnetic Resonance Images (MRI). Utilizing this dataset, brain tumor detection is advanced through the application of diverse models, including EfficientNetB3, ResNet50, MobileNetV3, and VGG16. The study prioritizes dataset preprocessing, emphasizing data augmentation. Diverse brain tumor images contribute to model training, incorporating transfer learning from pre-trained models on extensive datasets for discerning intricate patterns in medical images. Efficiency evaluation considers computational resources, training time, and complexity. Quantitative metrics F1 score, accuracy, recall, and precision are employed to gauge model performance in classifying the tumor and non-tumor regions. In the conducted study, VGG16 demonstrated the best performance compared to all other models.</description><identifier>EISSN: 2473-5655</identifier><identifier>EISBN: 9798350305463</identifier><identifier>DOI: 10.1109/CSNT60213.2024.10545790</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Brain Tumor Detection ; Computational Efficiency ; Computational modeling ; Deep learning ; EfficientNetB3 ; Magnetic resonance imaging ; Measurement ; MobileNetV3 ; ResNet50 ; Training ; Transfer learning ; VGG16</subject><ispartof>2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), 2024, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10545790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10545790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gandham, Rushita</creatorcontrib><creatorcontrib>Manambakam, Keerthi Reddy</creatorcontrib><creatorcontrib>Nannapaneni, Navyasri</creatorcontrib><creatorcontrib>Enduri, Murali Krishna</creatorcontrib><creatorcontrib>Hajarathaiah, Koduru</creatorcontrib><creatorcontrib>Anamalamudi, Satish</creatorcontrib><title>MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning</title><title>2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT)</title><addtitle>CSNT</addtitle><description>Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make predicting survival rates challenging. Efficient identification of cerebral abnormalities is essential for the timely and effective management of neurological conditions. Exploring the application of deep learning, this study investigates brain tumor detection using a curated dataset of Magnetic Resonance Images (MRI). Utilizing this dataset, brain tumor detection is advanced through the application of diverse models, including EfficientNetB3, ResNet50, MobileNetV3, and VGG16. The study prioritizes dataset preprocessing, emphasizing data augmentation. Diverse brain tumor images contribute to model training, incorporating transfer learning from pre-trained models on extensive datasets for discerning intricate patterns in medical images. Efficiency evaluation considers computational resources, training time, and complexity. Quantitative metrics F1 score, accuracy, recall, and precision are employed to gauge model performance in classifying the tumor and non-tumor regions. In the conducted study, VGG16 demonstrated the best performance compared to all other models.</description><subject>Brain modeling</subject><subject>Brain Tumor Detection</subject><subject>Computational Efficiency</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>EfficientNetB3</subject><subject>Magnetic resonance imaging</subject><subject>Measurement</subject><subject>MobileNetV3</subject><subject>ResNet50</subject><subject>Training</subject><subject>Transfer learning</subject><subject>VGG16</subject><issn>2473-5655</issn><isbn>9798350305463</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j11LwzAYRqMgOGb_gWD-QOubvPlYvNPOqVAVXO9HmiZdZGtH2yn66y2oVwceDg8cQq4YZIyBuc7XL6UCzjDjwEXGQAqpDZyQxGizQAk4LQpPyYwLjalUUp6TZBjeAQA5Y8rwGcmfY1uvY7Mdb-ib_-h2xzF2bfyObUPvehtbWh73XU-X0TZtN8SBfsZxS5feH2jhbd9O4gU5C3Y3-OSPc1Ku7sv8MS1eH57y2yKNwuh0wRS4WtigQQXPwEoWRJBV5T03dYUBHUhnHLfcWqgNaj15waMzQjmOOCeXv7fRe7859HFv-6_Nfzb-AATFTQE</recordid><startdate>20240406</startdate><enddate>20240406</enddate><creator>Gandham, Rushita</creator><creator>Manambakam, Keerthi Reddy</creator><creator>Nannapaneni, Navyasri</creator><creator>Enduri, Murali Krishna</creator><creator>Hajarathaiah, Koduru</creator><creator>Anamalamudi, Satish</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240406</creationdate><title>MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning</title><author>Gandham, Rushita ; Manambakam, Keerthi Reddy ; Nannapaneni, Navyasri ; Enduri, Murali Krishna ; Hajarathaiah, Koduru ; Anamalamudi, Satish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i497-8160cd4af706fe10a51f4f5bbee29db3f3c05c9c2a2aa0d93776fefe3c946c233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain modeling</topic><topic>Brain Tumor Detection</topic><topic>Computational Efficiency</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>EfficientNetB3</topic><topic>Magnetic resonance imaging</topic><topic>Measurement</topic><topic>MobileNetV3</topic><topic>ResNet50</topic><topic>Training</topic><topic>Transfer learning</topic><topic>VGG16</topic><toplevel>online_resources</toplevel><creatorcontrib>Gandham, Rushita</creatorcontrib><creatorcontrib>Manambakam, Keerthi Reddy</creatorcontrib><creatorcontrib>Nannapaneni, Navyasri</creatorcontrib><creatorcontrib>Enduri, Murali Krishna</creatorcontrib><creatorcontrib>Hajarathaiah, Koduru</creatorcontrib><creatorcontrib>Anamalamudi, Satish</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gandham, Rushita</au><au>Manambakam, Keerthi Reddy</au><au>Nannapaneni, Navyasri</au><au>Enduri, Murali Krishna</au><au>Hajarathaiah, Koduru</au><au>Anamalamudi, Satish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning</atitle><btitle>2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT)</btitle><stitle>CSNT</stitle><date>2024-04-06</date><risdate>2024</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2473-5655</eissn><eisbn>9798350305463</eisbn><abstract>Brain tumors, characterized by abnormal cell growth, pose a substantial health challenge with non-cancerous (benign) and cancerous (malignant) categories. India witnesses the diagnosis of approximately 40,000 fresh instances of brain tumors annually. The rarity and diversity of tumor types make predicting survival rates challenging. Efficient identification of cerebral abnormalities is essential for the timely and effective management of neurological conditions. Exploring the application of deep learning, this study investigates brain tumor detection using a curated dataset of Magnetic Resonance Images (MRI). Utilizing this dataset, brain tumor detection is advanced through the application of diverse models, including EfficientNetB3, ResNet50, MobileNetV3, and VGG16. The study prioritizes dataset preprocessing, emphasizing data augmentation. Diverse brain tumor images contribute to model training, incorporating transfer learning from pre-trained models on extensive datasets for discerning intricate patterns in medical images. Efficiency evaluation considers computational resources, training time, and complexity. Quantitative metrics F1 score, accuracy, recall, and precision are employed to gauge model performance in classifying the tumor and non-tumor regions. In the conducted study, VGG16 demonstrated the best performance compared to all other models.</abstract><pub>IEEE</pub><doi>10.1109/CSNT60213.2024.10545790</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2473-5655 |
ispartof | 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), 2024, p.1-6 |
issn | 2473-5655 |
language | eng |
recordid | cdi_ieee_primary_10545790 |
source | IEEE Xplore All Conference Series |
subjects | Brain modeling Brain Tumor Detection Computational Efficiency Computational modeling Deep learning EfficientNetB3 Magnetic resonance imaging Measurement MobileNetV3 ResNet50 Training Transfer learning VGG16 |
title | MindSight: Revolutionizing Brain Tumor Diagnosis with Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MindSight:%20Revolutionizing%20Brain%20Tumor%20Diagnosis%20with%20Deep%20Learning&rft.btitle=2024%20IEEE%2013th%20International%20Conference%20on%20Communication%20Systems%20and%20Network%20Technologies%20(CSNT)&rft.au=Gandham,%20Rushita&rft.date=2024-04-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2473-5655&rft_id=info:doi/10.1109/CSNT60213.2024.10545790&rft.eisbn=9798350305463&rft_dat=%3Cieee_CHZPO%3E10545790%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i497-8160cd4af706fe10a51f4f5bbee29db3f3c05c9c2a2aa0d93776fefe3c946c233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10545790&rfr_iscdi=true |