Loading…

Design and Implementation of Secure CP-Less Multi-User OCDM Transceiver for 6G Wireless Communication Networks

In this paper, we designed and implemented a multi-antenna configured secure millimeter-wave (mmWave) CP-less multi-user orthogonal chirp division multiplexing (OCDM) transceiver. The proposed simulated system emphasizes more applicable performance metrics for a typically assumed case of four users...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.79276-79296
Main Authors: Hossain, Md. Najmul, Raad, Raad, Sooppy Nisar, Kottakkaran, Enayet Ullah, Shaikh, Jabin, Fowzia, Kamal, Sk. Tamanna, Shimamura, Tetsuya, Tubbal, Faisel, Abulgasem, Suhila
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-63546e79b1358862eb5241a78b8e70c8636cbed2e24218d1ce4285e5dbe8c97c3
container_end_page 79296
container_issue
container_start_page 79276
container_title IEEE access
container_volume 12
creator Hossain, Md. Najmul
Raad, Raad
Sooppy Nisar, Kottakkaran
Enayet Ullah, Shaikh
Jabin, Fowzia
Kamal, Sk. Tamanna
Shimamura, Tetsuya
Tubbal, Faisel
Abulgasem, Suhila
description In this paper, we designed and implemented a multi-antenna configured secure millimeter-wave (mmWave) CP-less multi-user orthogonal chirp division multiplexing (OCDM) transceiver. The proposed simulated system emphasizes more applicable performance metrics for a typically assumed case of four users and a passive eavesdropper for audio data transmission. We introduce a four-dimensional hyperchaotic system-based encryption algorithm to enhance physical layer security (PLS). In addition, low-density parity check (LDPC), TURBO, ( 3, 2 ) single parity check (SPC), and repeat and accumulate (RA) channel coding with Cholesky decomposition-based zero-forcing (CD-ZF) and minimum mean square error (MMSE) signal detection techniques for a better bit error rate (BER) were also implemented. The simulation results signify the effectiveness of the proposed system in terms of PLS enhancement with low correlation coefficients (14.62%, 7.61%, 13.61%, and 15.39% for users 1, 2, 3, and 4, respectively), an achievable secrecy rate with a low signal-to-interference and noise ratio (SINR) of the passive eavesdropper, an achievable out-of-band (OOB) power emission of 341 dB, an estimated average short-time Fourier transform (STFT) spectral power difference of 7.68 dB and estimated peak-to-average power ratios (PAPRs) ranging from 7 to 7.5 dB at a complementary cumulative distribution function (CCDF) of 1\times 10^{-3} for different ground transmitting channels. At an identical signal-to-noise ratio (SNR) of 17 dB, all four users achieved a bit error rate of 1\times 10^{-4} under RA channel coding, CD-ZF, and 16-QAM (quadrature amplitude modulation) digital modulation.
doi_str_mv 10.1109/ACCESS.2024.3409473
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10547255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10547255</ieee_id><doaj_id>oai_doaj_org_article_7f6c4e4e1a3e4ee0a8904f1dac420f87</doaj_id><sourcerecordid>3068177258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-63546e79b1358862eb5241a78b8e70c8636cbed2e24218d1ce4285e5dbe8c97c3</originalsourceid><addsrcrecordid>eNpNkUtr3DAUhU1JICHJL2gWgq490VvyMjiPDkyawCR0KWT5OmhqW1PJbum_jyYOJVpcicM5ny6covhK8IoQXF1d1_XtdruimPIV47jiin0pTimRVckEk0ef3ifFRUo7nI_OklCnxXgDyb-OyI4tWg_7HgYYJzv5MKLQoS24OQKqn8oNpIQe5n7y5UuCiB7rmwf0HO2YHPg_WehCRPIe_fQR-oO3DsMwj94trB8w_Q3xVzovjjvbJ7j4uM-Kl7vb5_p7uXm8X9fXm9JRXU2lZIJLUFVDmNBaUmgE5cQq3WhQ2GnJpGugpUA5JbolDjjVAkTbgHaVcuysWC_cNtid2Uc_2PjPBOvNuxDiq7Fx8q4HozrpOHAgluUJ2OoK84601nGKO60y69vC2sfwe4Y0mV2Y45jXNwxLTZSiQmcXW1wuhpQidP9_JdgcejJLT-bQk_noKacul5QHgE8JwTNUsDcaNI42</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068177258</pqid></control><display><type>article</type><title>Design and Implementation of Secure CP-Less Multi-User OCDM Transceiver for 6G Wireless Communication Networks</title><source>IEEE Open Access Journals</source><creator>Hossain, Md. Najmul ; Raad, Raad ; Sooppy Nisar, Kottakkaran ; Enayet Ullah, Shaikh ; Jabin, Fowzia ; Kamal, Sk. Tamanna ; Shimamura, Tetsuya ; Tubbal, Faisel ; Abulgasem, Suhila</creator><creatorcontrib>Hossain, Md. Najmul ; Raad, Raad ; Sooppy Nisar, Kottakkaran ; Enayet Ullah, Shaikh ; Jabin, Fowzia ; Kamal, Sk. Tamanna ; Shimamura, Tetsuya ; Tubbal, Faisel ; Abulgasem, Suhila</creatorcontrib><description><![CDATA[In this paper, we designed and implemented a multi-antenna configured secure millimeter-wave (mmWave) CP-less multi-user orthogonal chirp division multiplexing (OCDM) transceiver. The proposed simulated system emphasizes more applicable performance metrics for a typically assumed case of four users and a passive eavesdropper for audio data transmission. We introduce a four-dimensional hyperchaotic system-based encryption algorithm to enhance physical layer security (PLS). In addition, low-density parity check (LDPC), TURBO, (<inline-formula> <tex-math notation="LaTeX">3, 2 </tex-math></inline-formula>) single parity check (SPC), and repeat and accumulate (RA) channel coding with Cholesky decomposition-based zero-forcing (CD-ZF) and minimum mean square error (MMSE) signal detection techniques for a better bit error rate (BER) were also implemented. The simulation results signify the effectiveness of the proposed system in terms of PLS enhancement with low correlation coefficients (14.62%, 7.61%, 13.61%, and 15.39% for users 1, 2, 3, and 4, respectively), an achievable secrecy rate with a low signal-to-interference and noise ratio (SINR) of the passive eavesdropper, an achievable out-of-band (OOB) power emission of 341 dB, an estimated average short-time Fourier transform (STFT) spectral power difference of 7.68 dB and estimated peak-to-average power ratios (PAPRs) ranging from 7 to 7.5 dB at a complementary cumulative distribution function (CCDF) of <inline-formula> <tex-math notation="LaTeX">1\times 10^{-3} </tex-math></inline-formula> for different ground transmitting channels. At an identical signal-to-noise ratio (SNR) of 17 dB, all four users achieved a bit error rate of <inline-formula> <tex-math notation="LaTeX">1\times 10^{-4} </tex-math></inline-formula> under RA channel coding, CD-ZF, and 16-QAM (quadrature amplitude modulation) digital modulation.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3409473</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>6G mobile communication ; Algorithms ; Audio data ; BER ; Bit error rate ; Channel coding ; Chirp ; Code division multiplexing ; Codes ; Coding ; Communication networks ; Correlation coefficients ; cyclic prefix-less ; Data transmission ; Distribution functions ; Eavesdropping ; Error detection ; Fourier transforms ; Mathematical models ; Millimeter wave communication ; Millimeter waves ; Multiplexing ; OCDM ; OFDM ; OOB ; PAPR ; Parity ; Performance measurement ; physical layer security encryption ; Quadrature amplitude modulation ; Signal detection ; Signal to noise ratio ; SINR ; Symbols ; Wireless communications</subject><ispartof>IEEE access, 2024, Vol.12, p.79276-79296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-63546e79b1358862eb5241a78b8e70c8636cbed2e24218d1ce4285e5dbe8c97c3</cites><orcidid>0000-0003-4984-6392 ; 0000-0002-7874-3467 ; 0000-0001-5769-4320 ; 0000-0002-7561-9903 ; 0000-0002-2528-9168 ; 0000-0002-2347-4837 ; 0000-0003-0309-5474 ; 0009-0000-1136-8941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10547255$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hossain, Md. Najmul</creatorcontrib><creatorcontrib>Raad, Raad</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><creatorcontrib>Enayet Ullah, Shaikh</creatorcontrib><creatorcontrib>Jabin, Fowzia</creatorcontrib><creatorcontrib>Kamal, Sk. Tamanna</creatorcontrib><creatorcontrib>Shimamura, Tetsuya</creatorcontrib><creatorcontrib>Tubbal, Faisel</creatorcontrib><creatorcontrib>Abulgasem, Suhila</creatorcontrib><title>Design and Implementation of Secure CP-Less Multi-User OCDM Transceiver for 6G Wireless Communication Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[In this paper, we designed and implemented a multi-antenna configured secure millimeter-wave (mmWave) CP-less multi-user orthogonal chirp division multiplexing (OCDM) transceiver. The proposed simulated system emphasizes more applicable performance metrics for a typically assumed case of four users and a passive eavesdropper for audio data transmission. We introduce a four-dimensional hyperchaotic system-based encryption algorithm to enhance physical layer security (PLS). In addition, low-density parity check (LDPC), TURBO, (<inline-formula> <tex-math notation="LaTeX">3, 2 </tex-math></inline-formula>) single parity check (SPC), and repeat and accumulate (RA) channel coding with Cholesky decomposition-based zero-forcing (CD-ZF) and minimum mean square error (MMSE) signal detection techniques for a better bit error rate (BER) were also implemented. The simulation results signify the effectiveness of the proposed system in terms of PLS enhancement with low correlation coefficients (14.62%, 7.61%, 13.61%, and 15.39% for users 1, 2, 3, and 4, respectively), an achievable secrecy rate with a low signal-to-interference and noise ratio (SINR) of the passive eavesdropper, an achievable out-of-band (OOB) power emission of 341 dB, an estimated average short-time Fourier transform (STFT) spectral power difference of 7.68 dB and estimated peak-to-average power ratios (PAPRs) ranging from 7 to 7.5 dB at a complementary cumulative distribution function (CCDF) of <inline-formula> <tex-math notation="LaTeX">1\times 10^{-3} </tex-math></inline-formula> for different ground transmitting channels. At an identical signal-to-noise ratio (SNR) of 17 dB, all four users achieved a bit error rate of <inline-formula> <tex-math notation="LaTeX">1\times 10^{-4} </tex-math></inline-formula> under RA channel coding, CD-ZF, and 16-QAM (quadrature amplitude modulation) digital modulation.]]></description><subject>6G mobile communication</subject><subject>Algorithms</subject><subject>Audio data</subject><subject>BER</subject><subject>Bit error rate</subject><subject>Channel coding</subject><subject>Chirp</subject><subject>Code division multiplexing</subject><subject>Codes</subject><subject>Coding</subject><subject>Communication networks</subject><subject>Correlation coefficients</subject><subject>cyclic prefix-less</subject><subject>Data transmission</subject><subject>Distribution functions</subject><subject>Eavesdropping</subject><subject>Error detection</subject><subject>Fourier transforms</subject><subject>Mathematical models</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>Multiplexing</subject><subject>OCDM</subject><subject>OFDM</subject><subject>OOB</subject><subject>PAPR</subject><subject>Parity</subject><subject>Performance measurement</subject><subject>physical layer security encryption</subject><subject>Quadrature amplitude modulation</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>SINR</subject><subject>Symbols</subject><subject>Wireless communications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtr3DAUhU1JICHJL2gWgq490VvyMjiPDkyawCR0KWT5OmhqW1PJbum_jyYOJVpcicM5ny6covhK8IoQXF1d1_XtdruimPIV47jiin0pTimRVckEk0ef3ifFRUo7nI_OklCnxXgDyb-OyI4tWg_7HgYYJzv5MKLQoS24OQKqn8oNpIQe5n7y5UuCiB7rmwf0HO2YHPg_WehCRPIe_fQR-oO3DsMwj94trB8w_Q3xVzovjjvbJ7j4uM-Kl7vb5_p7uXm8X9fXm9JRXU2lZIJLUFVDmNBaUmgE5cQq3WhQ2GnJpGugpUA5JbolDjjVAkTbgHaVcuysWC_cNtid2Uc_2PjPBOvNuxDiq7Fx8q4HozrpOHAgluUJ2OoK84601nGKO60y69vC2sfwe4Y0mV2Y45jXNwxLTZSiQmcXW1wuhpQidP9_JdgcejJLT-bQk_noKacul5QHgE8JwTNUsDcaNI42</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hossain, Md. Najmul</creator><creator>Raad, Raad</creator><creator>Sooppy Nisar, Kottakkaran</creator><creator>Enayet Ullah, Shaikh</creator><creator>Jabin, Fowzia</creator><creator>Kamal, Sk. Tamanna</creator><creator>Shimamura, Tetsuya</creator><creator>Tubbal, Faisel</creator><creator>Abulgasem, Suhila</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4984-6392</orcidid><orcidid>https://orcid.org/0000-0002-7874-3467</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-7561-9903</orcidid><orcidid>https://orcid.org/0000-0002-2528-9168</orcidid><orcidid>https://orcid.org/0000-0002-2347-4837</orcidid><orcidid>https://orcid.org/0000-0003-0309-5474</orcidid><orcidid>https://orcid.org/0009-0000-1136-8941</orcidid></search><sort><creationdate>2024</creationdate><title>Design and Implementation of Secure CP-Less Multi-User OCDM Transceiver for 6G Wireless Communication Networks</title><author>Hossain, Md. Najmul ; Raad, Raad ; Sooppy Nisar, Kottakkaran ; Enayet Ullah, Shaikh ; Jabin, Fowzia ; Kamal, Sk. Tamanna ; Shimamura, Tetsuya ; Tubbal, Faisel ; Abulgasem, Suhila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-63546e79b1358862eb5241a78b8e70c8636cbed2e24218d1ce4285e5dbe8c97c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>6G mobile communication</topic><topic>Algorithms</topic><topic>Audio data</topic><topic>BER</topic><topic>Bit error rate</topic><topic>Channel coding</topic><topic>Chirp</topic><topic>Code division multiplexing</topic><topic>Codes</topic><topic>Coding</topic><topic>Communication networks</topic><topic>Correlation coefficients</topic><topic>cyclic prefix-less</topic><topic>Data transmission</topic><topic>Distribution functions</topic><topic>Eavesdropping</topic><topic>Error detection</topic><topic>Fourier transforms</topic><topic>Mathematical models</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>Multiplexing</topic><topic>OCDM</topic><topic>OFDM</topic><topic>OOB</topic><topic>PAPR</topic><topic>Parity</topic><topic>Performance measurement</topic><topic>physical layer security encryption</topic><topic>Quadrature amplitude modulation</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>SINR</topic><topic>Symbols</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Md. Najmul</creatorcontrib><creatorcontrib>Raad, Raad</creatorcontrib><creatorcontrib>Sooppy Nisar, Kottakkaran</creatorcontrib><creatorcontrib>Enayet Ullah, Shaikh</creatorcontrib><creatorcontrib>Jabin, Fowzia</creatorcontrib><creatorcontrib>Kamal, Sk. Tamanna</creatorcontrib><creatorcontrib>Shimamura, Tetsuya</creatorcontrib><creatorcontrib>Tubbal, Faisel</creatorcontrib><creatorcontrib>Abulgasem, Suhila</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Md. Najmul</au><au>Raad, Raad</au><au>Sooppy Nisar, Kottakkaran</au><au>Enayet Ullah, Shaikh</au><au>Jabin, Fowzia</au><au>Kamal, Sk. Tamanna</au><au>Shimamura, Tetsuya</au><au>Tubbal, Faisel</au><au>Abulgasem, Suhila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of Secure CP-Less Multi-User OCDM Transceiver for 6G Wireless Communication Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>79276</spage><epage>79296</epage><pages>79276-79296</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[In this paper, we designed and implemented a multi-antenna configured secure millimeter-wave (mmWave) CP-less multi-user orthogonal chirp division multiplexing (OCDM) transceiver. The proposed simulated system emphasizes more applicable performance metrics for a typically assumed case of four users and a passive eavesdropper for audio data transmission. We introduce a four-dimensional hyperchaotic system-based encryption algorithm to enhance physical layer security (PLS). In addition, low-density parity check (LDPC), TURBO, (<inline-formula> <tex-math notation="LaTeX">3, 2 </tex-math></inline-formula>) single parity check (SPC), and repeat and accumulate (RA) channel coding with Cholesky decomposition-based zero-forcing (CD-ZF) and minimum mean square error (MMSE) signal detection techniques for a better bit error rate (BER) were also implemented. The simulation results signify the effectiveness of the proposed system in terms of PLS enhancement with low correlation coefficients (14.62%, 7.61%, 13.61%, and 15.39% for users 1, 2, 3, and 4, respectively), an achievable secrecy rate with a low signal-to-interference and noise ratio (SINR) of the passive eavesdropper, an achievable out-of-band (OOB) power emission of 341 dB, an estimated average short-time Fourier transform (STFT) spectral power difference of 7.68 dB and estimated peak-to-average power ratios (PAPRs) ranging from 7 to 7.5 dB at a complementary cumulative distribution function (CCDF) of <inline-formula> <tex-math notation="LaTeX">1\times 10^{-3} </tex-math></inline-formula> for different ground transmitting channels. At an identical signal-to-noise ratio (SNR) of 17 dB, all four users achieved a bit error rate of <inline-formula> <tex-math notation="LaTeX">1\times 10^{-4} </tex-math></inline-formula> under RA channel coding, CD-ZF, and 16-QAM (quadrature amplitude modulation) digital modulation.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3409473</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4984-6392</orcidid><orcidid>https://orcid.org/0000-0002-7874-3467</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-7561-9903</orcidid><orcidid>https://orcid.org/0000-0002-2528-9168</orcidid><orcidid>https://orcid.org/0000-0002-2347-4837</orcidid><orcidid>https://orcid.org/0000-0003-0309-5474</orcidid><orcidid>https://orcid.org/0009-0000-1136-8941</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.79276-79296
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10547255
source IEEE Open Access Journals
subjects 6G mobile communication
Algorithms
Audio data
BER
Bit error rate
Channel coding
Chirp
Code division multiplexing
Codes
Coding
Communication networks
Correlation coefficients
cyclic prefix-less
Data transmission
Distribution functions
Eavesdropping
Error detection
Fourier transforms
Mathematical models
Millimeter wave communication
Millimeter waves
Multiplexing
OCDM
OFDM
OOB
PAPR
Parity
Performance measurement
physical layer security encryption
Quadrature amplitude modulation
Signal detection
Signal to noise ratio
SINR
Symbols
Wireless communications
title Design and Implementation of Secure CP-Less Multi-User OCDM Transceiver for 6G Wireless Communication Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20Secure%20CP-Less%20Multi-User%20OCDM%20Transceiver%20for%206G%20Wireless%20Communication%20Networks&rft.jtitle=IEEE%20access&rft.au=Hossain,%20Md.%20Najmul&rft.date=2024&rft.volume=12&rft.spage=79276&rft.epage=79296&rft.pages=79276-79296&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3409473&rft_dat=%3Cproquest_ieee_%3E3068177258%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-63546e79b1358862eb5241a78b8e70c8636cbed2e24218d1ce4285e5dbe8c97c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068177258&rft_id=info:pmid/&rft_ieee_id=10547255&rfr_iscdi=true