Loading…
Unveiling Taiwan Stock Market Dynamics: A Graph Neural Network Approach to Automatic Stock Clustering for Enhanced Predictions
In this paper, we introduce graph neural networks (GNNs) and automatic stock clustering to improve stock market prediction accuracy in the market of Taiwan Stock Exchange. GNNs capture intricate inter-stock relationships, enhancing prediction accuracy. Automatic clustering based on market behavior e...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 402 |
container_issue | |
container_start_page | 400 |
container_title | |
container_volume | |
creator | Lee, Lin-Sheng Chen, Jenhui |
description | In this paper, we introduce graph neural networks (GNNs) and automatic stock clustering to improve stock market prediction accuracy in the market of Taiwan Stock Exchange. GNNs capture intricate inter-stock relationships, enhancing prediction accuracy. Automatic clustering based on market behavior ensures adaptability. Results demonstrate significant improvements, with potential applicability beyond Taiwan's market, advancing financial prediction methodologies. |
doi_str_mv | 10.1109/ICASI60819.2024.10547817 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10547817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10547817</ieee_id><sourcerecordid>10547817</sourcerecordid><originalsourceid>FETCH-LOGICAL-i491-9504949b515ea03d2c34fd1e4f5ec1385ef56a66e983d139a0f6befa4884108a3</originalsourceid><addsrcrecordid>eNo1kMtOwkAYRkcTEwnyBi7mBYoznUtn3DWISIKXBFyTn-lfGSltMx0kbHx2a8TVWXzJSc5HCOVszDmzd_NJvpxrZrgdpyyVY86UzAzPLsjIZtYIxYSVNpWXZJBm2iSSK31NRl33yRgTab9qOSDf7_UX-srXH3QF_gg1XcbG7egzhB1G-nCqYe9dd09zOgvQbukLHgJUPeKxCTuat21owG1pbGh-iM0eondnx6Q6dBHDr7tsAp3WW6gdFvQtYOFd9E3d3ZCrEqoOR2cOyepxupo8JYvXWR-4SLy0PLGKyb5lo7hCYKJInZBlwVGWCh0XRmGpNGiNfXbBhQVW6g2WII2RnBkQQ3L7p_WIuG6D30M4rf8fEz_b-WGm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unveiling Taiwan Stock Market Dynamics: A Graph Neural Network Approach to Automatic Stock Clustering for Enhanced Predictions</title><source>IEEE Xplore All Conference Series</source><creator>Lee, Lin-Sheng ; Chen, Jenhui</creator><creatorcontrib>Lee, Lin-Sheng ; Chen, Jenhui</creatorcontrib><description>In this paper, we introduce graph neural networks (GNNs) and automatic stock clustering to improve stock market prediction accuracy in the market of Taiwan Stock Exchange. GNNs capture intricate inter-stock relationships, enhancing prediction accuracy. Automatic clustering based on market behavior ensures adaptability. Results demonstrate significant improvements, with potential applicability beyond Taiwan's market, advancing financial prediction methodologies.</description><identifier>EISSN: 2768-4156</identifier><identifier>EISBN: 9798350394924</identifier><identifier>DOI: 10.1109/ICASI60819.2024.10547817</identifier><language>eng</language><publisher>IEEE</publisher><subject>automatic clustering ; Cause effect analysis ; financial forecasting ; Fitting ; Graph neural networks ; Predictive models ; stock market prediction ; Stock markets ; Task analysis ; Technological innovation</subject><ispartof>2024 10th International Conference on Applied System Innovation (ICASI), 2024, p.400-402</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10547817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10547817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Lin-Sheng</creatorcontrib><creatorcontrib>Chen, Jenhui</creatorcontrib><title>Unveiling Taiwan Stock Market Dynamics: A Graph Neural Network Approach to Automatic Stock Clustering for Enhanced Predictions</title><title>2024 10th International Conference on Applied System Innovation (ICASI)</title><addtitle>ICASI</addtitle><description>In this paper, we introduce graph neural networks (GNNs) and automatic stock clustering to improve stock market prediction accuracy in the market of Taiwan Stock Exchange. GNNs capture intricate inter-stock relationships, enhancing prediction accuracy. Automatic clustering based on market behavior ensures adaptability. Results demonstrate significant improvements, with potential applicability beyond Taiwan's market, advancing financial prediction methodologies.</description><subject>automatic clustering</subject><subject>Cause effect analysis</subject><subject>financial forecasting</subject><subject>Fitting</subject><subject>Graph neural networks</subject><subject>Predictive models</subject><subject>stock market prediction</subject><subject>Stock markets</subject><subject>Task analysis</subject><subject>Technological innovation</subject><issn>2768-4156</issn><isbn>9798350394924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwkAYRkcTEwnyBi7mBYoznUtn3DWISIKXBFyTn-lfGSltMx0kbHx2a8TVWXzJSc5HCOVszDmzd_NJvpxrZrgdpyyVY86UzAzPLsjIZtYIxYSVNpWXZJBm2iSSK31NRl33yRgTab9qOSDf7_UX-srXH3QF_gg1XcbG7egzhB1G-nCqYe9dd09zOgvQbukLHgJUPeKxCTuat21owG1pbGh-iM0eondnx6Q6dBHDr7tsAp3WW6gdFvQtYOFd9E3d3ZCrEqoOR2cOyepxupo8JYvXWR-4SLy0PLGKyb5lo7hCYKJInZBlwVGWCh0XRmGpNGiNfXbBhQVW6g2WII2RnBkQQ3L7p_WIuG6D30M4rf8fEz_b-WGm</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Lee, Lin-Sheng</creator><creator>Chen, Jenhui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240417</creationdate><title>Unveiling Taiwan Stock Market Dynamics: A Graph Neural Network Approach to Automatic Stock Clustering for Enhanced Predictions</title><author>Lee, Lin-Sheng ; Chen, Jenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i491-9504949b515ea03d2c34fd1e4f5ec1385ef56a66e983d139a0f6befa4884108a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automatic clustering</topic><topic>Cause effect analysis</topic><topic>financial forecasting</topic><topic>Fitting</topic><topic>Graph neural networks</topic><topic>Predictive models</topic><topic>stock market prediction</topic><topic>Stock markets</topic><topic>Task analysis</topic><topic>Technological innovation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Lin-Sheng</creatorcontrib><creatorcontrib>Chen, Jenhui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Lin-Sheng</au><au>Chen, Jenhui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unveiling Taiwan Stock Market Dynamics: A Graph Neural Network Approach to Automatic Stock Clustering for Enhanced Predictions</atitle><btitle>2024 10th International Conference on Applied System Innovation (ICASI)</btitle><stitle>ICASI</stitle><date>2024-04-17</date><risdate>2024</risdate><spage>400</spage><epage>402</epage><pages>400-402</pages><eissn>2768-4156</eissn><eisbn>9798350394924</eisbn><abstract>In this paper, we introduce graph neural networks (GNNs) and automatic stock clustering to improve stock market prediction accuracy in the market of Taiwan Stock Exchange. GNNs capture intricate inter-stock relationships, enhancing prediction accuracy. Automatic clustering based on market behavior ensures adaptability. Results demonstrate significant improvements, with potential applicability beyond Taiwan's market, advancing financial prediction methodologies.</abstract><pub>IEEE</pub><doi>10.1109/ICASI60819.2024.10547817</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2768-4156 |
ispartof | 2024 10th International Conference on Applied System Innovation (ICASI), 2024, p.400-402 |
issn | 2768-4156 |
language | eng |
recordid | cdi_ieee_primary_10547817 |
source | IEEE Xplore All Conference Series |
subjects | automatic clustering Cause effect analysis financial forecasting Fitting Graph neural networks Predictive models stock market prediction Stock markets Task analysis Technological innovation |
title | Unveiling Taiwan Stock Market Dynamics: A Graph Neural Network Approach to Automatic Stock Clustering for Enhanced Predictions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unveiling%20Taiwan%20Stock%20Market%20Dynamics:%20A%20Graph%20Neural%20Network%20Approach%20to%20Automatic%20Stock%20Clustering%20for%20Enhanced%20Predictions&rft.btitle=2024%2010th%20International%20Conference%20on%20Applied%20System%20Innovation%20(ICASI)&rft.au=Lee,%20Lin-Sheng&rft.date=2024-04-17&rft.spage=400&rft.epage=402&rft.pages=400-402&rft.eissn=2768-4156&rft_id=info:doi/10.1109/ICASI60819.2024.10547817&rft.eisbn=9798350394924&rft_dat=%3Cieee_CHZPO%3E10547817%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i491-9504949b515ea03d2c34fd1e4f5ec1385ef56a66e983d139a0f6befa4884108a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10547817&rfr_iscdi=true |