Loading…

DAC: Detector-Agnostic Spatial Covariances for Deep Local Features

Current deep visual local feature detectors do not model the spatial uncertainty of detected features, producing suboptimal results in downstream applications. In this work, we propose two post-hoc covariance estimates that can be plugged into any pretrained deep feature detector: a simple, isotropi...

Full description

Saved in:
Bibliographic Details
Main Authors: Tirado-Garin, Javier, Warburg, Frederik, Civera, Javier
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 738
container_issue
container_start_page 728
container_title
container_volume
creator Tirado-Garin, Javier
Warburg, Frederik
Civera, Javier
description Current deep visual local feature detectors do not model the spatial uncertainty of detected features, producing suboptimal results in downstream applications. In this work, we propose two post-hoc covariance estimates that can be plugged into any pretrained deep feature detector: a simple, isotropic estimate that uses the predicted score at a given pixel location, and a full estimate via the local structure tensor of the learned score maps. Both methods are easy to implement and can be applied to any deep feature detector. We show that these covariances are directly related to errors in feature matching, leading to improvements in downstream tasks, including solving the perspective-n-point problem and motion-only bundle adjustment. Code is available at https://github.com/javrtg/DAC.
doi_str_mv 10.1109/3DV62453.2024.00034
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10550632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10550632</ieee_id><sourcerecordid>10550632</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-a70933800377566912046605040b325cf002527ec492773ea3051706542985d83</originalsourceid><addsrcrecordid>eNotjs1KxDAURqMgOIx9Al30BVpvcnPz4662jgoFF_5shxhTqYzTkkTBt7eDrr7FOXwcxs451JyDvcTuRQlJWAsQsgYAlEessNoaJMADssdsJaSmShtjTlmR0seiCSO5Abti113TXpVdyMHnKVbN-35KefTl4-zy6HZlO327OLq9D6kcpriYYS77yS9oE1z-iiGdsZPB7VIo_nfNnjc3T-1d1T_c3rdNX40cZa6cBotolkStSSnLBUilgEDCKwryw1JFQgcvrdAag0MgrkGRFNbQm8E1u_j7HUMI2zmOny7-bDkQgUKBv0IUR1Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DAC: Detector-Agnostic Spatial Covariances for Deep Local Features</title><source>IEEE Xplore All Conference Series</source><creator>Tirado-Garin, Javier ; Warburg, Frederik ; Civera, Javier</creator><creatorcontrib>Tirado-Garin, Javier ; Warburg, Frederik ; Civera, Javier</creatorcontrib><description>Current deep visual local feature detectors do not model the spatial uncertainty of detected features, producing suboptimal results in downstream applications. In this work, we propose two post-hoc covariance estimates that can be plugged into any pretrained deep feature detector: a simple, isotropic estimate that uses the predicted score at a given pixel location, and a full estimate via the local structure tensor of the learned score maps. Both methods are easy to implement and can be applied to any deep feature detector. We show that these covariances are directly related to errors in feature matching, leading to improvements in downstream tasks, including solving the perspective-n-point problem and motion-only bundle adjustment. Code is available at https://github.com/javrtg/DAC.</description><identifier>EISSN: 2475-7888</identifier><identifier>EISBN: 9798350362459</identifier><identifier>DOI: 10.1109/3DV62453.2024.00034</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D Geometry ; Bundle adjustment ; Codes ; Deep Local Features ; Detectors ; Estimation ; Local features ; Tensors ; Uncertainty ; Uncertainty Quantification ; Visualization</subject><ispartof>2024 International Conference on 3D Vision (3DV), 2024, p.728-738</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10550632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10550632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tirado-Garin, Javier</creatorcontrib><creatorcontrib>Warburg, Frederik</creatorcontrib><creatorcontrib>Civera, Javier</creatorcontrib><title>DAC: Detector-Agnostic Spatial Covariances for Deep Local Features</title><title>2024 International Conference on 3D Vision (3DV)</title><addtitle>3DV</addtitle><description>Current deep visual local feature detectors do not model the spatial uncertainty of detected features, producing suboptimal results in downstream applications. In this work, we propose two post-hoc covariance estimates that can be plugged into any pretrained deep feature detector: a simple, isotropic estimate that uses the predicted score at a given pixel location, and a full estimate via the local structure tensor of the learned score maps. Both methods are easy to implement and can be applied to any deep feature detector. We show that these covariances are directly related to errors in feature matching, leading to improvements in downstream tasks, including solving the perspective-n-point problem and motion-only bundle adjustment. Code is available at https://github.com/javrtg/DAC.</description><subject>3D Geometry</subject><subject>Bundle adjustment</subject><subject>Codes</subject><subject>Deep Local Features</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Local features</subject><subject>Tensors</subject><subject>Uncertainty</subject><subject>Uncertainty Quantification</subject><subject>Visualization</subject><issn>2475-7888</issn><isbn>9798350362459</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1KxDAURqMgOIx9Al30BVpvcnPz4662jgoFF_5shxhTqYzTkkTBt7eDrr7FOXwcxs451JyDvcTuRQlJWAsQsgYAlEessNoaJMADssdsJaSmShtjTlmR0seiCSO5Abti113TXpVdyMHnKVbN-35KefTl4-zy6HZlO327OLq9D6kcpriYYS77yS9oE1z-iiGdsZPB7VIo_nfNnjc3T-1d1T_c3rdNX40cZa6cBotolkStSSnLBUilgEDCKwryw1JFQgcvrdAag0MgrkGRFNbQm8E1u_j7HUMI2zmOny7-bDkQgUKBv0IUR1Q</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Tirado-Garin, Javier</creator><creator>Warburg, Frederik</creator><creator>Civera, Javier</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20240318</creationdate><title>DAC: Detector-Agnostic Spatial Covariances for Deep Local Features</title><author>Tirado-Garin, Javier ; Warburg, Frederik ; Civera, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-a70933800377566912046605040b325cf002527ec492773ea3051706542985d83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D Geometry</topic><topic>Bundle adjustment</topic><topic>Codes</topic><topic>Deep Local Features</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Local features</topic><topic>Tensors</topic><topic>Uncertainty</topic><topic>Uncertainty Quantification</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Tirado-Garin, Javier</creatorcontrib><creatorcontrib>Warburg, Frederik</creatorcontrib><creatorcontrib>Civera, Javier</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tirado-Garin, Javier</au><au>Warburg, Frederik</au><au>Civera, Javier</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DAC: Detector-Agnostic Spatial Covariances for Deep Local Features</atitle><btitle>2024 International Conference on 3D Vision (3DV)</btitle><stitle>3DV</stitle><date>2024-03-18</date><risdate>2024</risdate><spage>728</spage><epage>738</epage><pages>728-738</pages><eissn>2475-7888</eissn><eisbn>9798350362459</eisbn><coden>IEEPAD</coden><abstract>Current deep visual local feature detectors do not model the spatial uncertainty of detected features, producing suboptimal results in downstream applications. In this work, we propose two post-hoc covariance estimates that can be plugged into any pretrained deep feature detector: a simple, isotropic estimate that uses the predicted score at a given pixel location, and a full estimate via the local structure tensor of the learned score maps. Both methods are easy to implement and can be applied to any deep feature detector. We show that these covariances are directly related to errors in feature matching, leading to improvements in downstream tasks, including solving the perspective-n-point problem and motion-only bundle adjustment. Code is available at https://github.com/javrtg/DAC.</abstract><pub>IEEE</pub><doi>10.1109/3DV62453.2024.00034</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2475-7888
ispartof 2024 International Conference on 3D Vision (3DV), 2024, p.728-738
issn 2475-7888
language eng
recordid cdi_ieee_primary_10550632
source IEEE Xplore All Conference Series
subjects 3D Geometry
Bundle adjustment
Codes
Deep Local Features
Detectors
Estimation
Local features
Tensors
Uncertainty
Uncertainty Quantification
Visualization
title DAC: Detector-Agnostic Spatial Covariances for Deep Local Features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DAC:%20Detector-Agnostic%20Spatial%20Covariances%20for%20Deep%20Local%20Features&rft.btitle=2024%20International%20Conference%20on%203D%20Vision%20(3DV)&rft.au=Tirado-Garin,%20Javier&rft.date=2024-03-18&rft.spage=728&rft.epage=738&rft.pages=728-738&rft.eissn=2475-7888&rft.coden=IEEPAD&rft_id=info:doi/10.1109/3DV62453.2024.00034&rft.eisbn=9798350362459&rft_dat=%3Cieee_CHZPO%3E10550632%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i134t-a70933800377566912046605040b325cf002527ec492773ea3051706542985d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10550632&rfr_iscdi=true