Loading…

Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics

Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.83269-83284
Main Authors: Witharama, W. M. N., Bandara, K. M. D. P., Azeez, M. I., Bandara, Kasun, Logeeshan, V., Wanigasekara, Chathura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913
container_end_page 83284
container_issue
container_start_page 83269
container_title IEEE access
container_volume 12
creator Witharama, W. M. N.
Bandara, K. M. D. P.
Azeez, M. I.
Bandara, Kasun
Logeeshan, V.
Wanigasekara, Chathura
description Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and varying grid electricity prices. This paper presents an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power generation and building load consumption. The approach aims to minimize operational costs and ensure microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs under Sri Lanka's current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive demand response management has the potential to minimize costs further. This research contributes to microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems.
doi_str_mv 10.1109/ACCESS.2024.3412914
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10553283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10553283</ieee_id><doaj_id>oai_doaj_org_article_4b1bd94e9d1e4d528c349b0b8bff153c</doaj_id><sourcerecordid>3069620354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913</originalsourceid><addsrcrecordid>eNpNUctqGzEUHUoLDUm-oF0Iuo0dvWYsLd1xXuASqJO10ONqIjMeudK44A_p_0bOhBJt7uXqnHMfp6q-ETwnBMvrZdvebDZziimfM06oJPxTdUZJI2esZs3nD_nX6jLnLS5PlFK9OKv-Ld1fPVhw6A4GGINFy76LKYwvO-RjQo_7Mex0j34Fm2KXgkMb-wLu0IehQ20ccnCQTvkm9johPTi0jtqh25jA6jyWryv0U48jpCNaQZe002OIw9UbdAW7U_gNeV-kAK2Og94Fmy-qL173GS7f43n1fHvz1N7P1o93D-1yPbNUyHGmfe0dXVCMDRcUN43wuLHGgGykYLbGWhrnmeCOekEcplQviGQeGk_BSMLOq4dJ10W9VftUVk1HFXVQb4WYOqVTOUoPihtinOQgHQHuaios49JgI4z3pGa2aP2YtPYp_jlAHtU2HtJQxlcMN7KhmNW8oNiEKufMOYH_35VgdbJTTXaqk53q3c7C-j6xAgB8YNQ1o4KxV7rGnV8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069620354</pqid></control><display><type>article</type><title>Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics</title><source>IEEE Xplore Open Access Journals</source><creator>Witharama, W. M. N. ; Bandara, K. M. D. P. ; Azeez, M. I. ; Bandara, Kasun ; Logeeshan, V. ; Wanigasekara, Chathura</creator><creatorcontrib>Witharama, W. M. N. ; Bandara, K. M. D. P. ; Azeez, M. I. ; Bandara, Kasun ; Logeeshan, V. ; Wanigasekara, Chathura</creatorcontrib><description>Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and varying grid electricity prices. This paper presents an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power generation and building load consumption. The approach aims to minimize operational costs and ensure microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs under Sri Lanka's current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive demand response management has the potential to minimize costs further. This research contributes to microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3412914</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; battery energy storage ; Cost function ; Costs ; Decision trees ; Degradation ; Demand response ; demand response strategies ; Distributed generation ; Electric power demand ; Electric power systems ; Electrical loads ; Electricity pricing ; Energy ; Energy costs ; Energy management ; Energy sources ; Energy storage ; genetic algorithm ; Genetic algorithms ; Machine learning ; Microgrid ; Microgrids ; Operating costs ; Optimal scheduling ; Optimization ; optimizing ; Power dispatch ; renewable energy ; Renewable energy sources ; Scheduling ; Solar panels ; Solar power generation ; sustainability</subject><ispartof>IEEE access, 2024, Vol.12, p.83269-83284</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913</cites><orcidid>0000-0003-4371-6108 ; 0000-0003-3767-8280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10553283$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Witharama, W. M. N.</creatorcontrib><creatorcontrib>Bandara, K. M. D. P.</creatorcontrib><creatorcontrib>Azeez, M. I.</creatorcontrib><creatorcontrib>Bandara, Kasun</creatorcontrib><creatorcontrib>Logeeshan, V.</creatorcontrib><creatorcontrib>Wanigasekara, Chathura</creatorcontrib><title>Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics</title><title>IEEE access</title><addtitle>Access</addtitle><description>Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and varying grid electricity prices. This paper presents an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power generation and building load consumption. The approach aims to minimize operational costs and ensure microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs under Sri Lanka's current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive demand response management has the potential to minimize costs further. This research contributes to microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems.</description><subject>Batteries</subject><subject>battery energy storage</subject><subject>Cost function</subject><subject>Costs</subject><subject>Decision trees</subject><subject>Degradation</subject><subject>Demand response</subject><subject>demand response strategies</subject><subject>Distributed generation</subject><subject>Electric power demand</subject><subject>Electric power systems</subject><subject>Electrical loads</subject><subject>Electricity pricing</subject><subject>Energy</subject><subject>Energy costs</subject><subject>Energy management</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Microgrid</subject><subject>Microgrids</subject><subject>Operating costs</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>optimizing</subject><subject>Power dispatch</subject><subject>renewable energy</subject><subject>Renewable energy sources</subject><subject>Scheduling</subject><subject>Solar panels</subject><subject>Solar power generation</subject><subject>sustainability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctqGzEUHUoLDUm-oF0Iuo0dvWYsLd1xXuASqJO10ONqIjMeudK44A_p_0bOhBJt7uXqnHMfp6q-ETwnBMvrZdvebDZziimfM06oJPxTdUZJI2esZs3nD_nX6jLnLS5PlFK9OKv-Ld1fPVhw6A4GGINFy76LKYwvO-RjQo_7Mex0j34Fm2KXgkMb-wLu0IehQ20ccnCQTvkm9johPTi0jtqh25jA6jyWryv0U48jpCNaQZe002OIw9UbdAW7U_gNeV-kAK2Og94Fmy-qL173GS7f43n1fHvz1N7P1o93D-1yPbNUyHGmfe0dXVCMDRcUN43wuLHGgGykYLbGWhrnmeCOekEcplQviGQeGk_BSMLOq4dJ10W9VftUVk1HFXVQb4WYOqVTOUoPihtinOQgHQHuaios49JgI4z3pGa2aP2YtPYp_jlAHtU2HtJQxlcMN7KhmNW8oNiEKufMOYH_35VgdbJTTXaqk53q3c7C-j6xAgB8YNQ1o4KxV7rGnV8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Witharama, W. M. N.</creator><creator>Bandara, K. M. D. P.</creator><creator>Azeez, M. I.</creator><creator>Bandara, Kasun</creator><creator>Logeeshan, V.</creator><creator>Wanigasekara, Chathura</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4371-6108</orcidid><orcidid>https://orcid.org/0000-0003-3767-8280</orcidid></search><sort><creationdate>2024</creationdate><title>Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics</title><author>Witharama, W. M. N. ; Bandara, K. M. D. P. ; Azeez, M. I. ; Bandara, Kasun ; Logeeshan, V. ; Wanigasekara, Chathura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>battery energy storage</topic><topic>Cost function</topic><topic>Costs</topic><topic>Decision trees</topic><topic>Degradation</topic><topic>Demand response</topic><topic>demand response strategies</topic><topic>Distributed generation</topic><topic>Electric power demand</topic><topic>Electric power systems</topic><topic>Electrical loads</topic><topic>Electricity pricing</topic><topic>Energy</topic><topic>Energy costs</topic><topic>Energy management</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Microgrid</topic><topic>Microgrids</topic><topic>Operating costs</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>optimizing</topic><topic>Power dispatch</topic><topic>renewable energy</topic><topic>Renewable energy sources</topic><topic>Scheduling</topic><topic>Solar panels</topic><topic>Solar power generation</topic><topic>sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witharama, W. M. N.</creatorcontrib><creatorcontrib>Bandara, K. M. D. P.</creatorcontrib><creatorcontrib>Azeez, M. I.</creatorcontrib><creatorcontrib>Bandara, Kasun</creatorcontrib><creatorcontrib>Logeeshan, V.</creatorcontrib><creatorcontrib>Wanigasekara, Chathura</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witharama, W. M. N.</au><au>Bandara, K. M. D. P.</au><au>Azeez, M. I.</au><au>Bandara, Kasun</au><au>Logeeshan, V.</au><au>Wanigasekara, Chathura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>83269</spage><epage>83284</epage><pages>83269-83284</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and varying grid electricity prices. This paper presents an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power generation and building load consumption. The approach aims to minimize operational costs and ensure microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs under Sri Lanka's current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive demand response management has the potential to minimize costs further. This research contributes to microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3412914</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4371-6108</orcidid><orcidid>https://orcid.org/0000-0003-3767-8280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.83269-83284
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10553283
source IEEE Xplore Open Access Journals
subjects Batteries
battery energy storage
Cost function
Costs
Decision trees
Degradation
Demand response
demand response strategies
Distributed generation
Electric power demand
Electric power systems
Electrical loads
Electricity pricing
Energy
Energy costs
Energy management
Energy sources
Energy storage
genetic algorithm
Genetic algorithms
Machine learning
Microgrid
Microgrids
Operating costs
Optimal scheduling
Optimization
optimizing
Power dispatch
renewable energy
Renewable energy sources
Scheduling
Solar panels
Solar power generation
sustainability
title Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Genetic%20Algorithm%20for%20Optimal%20Microgrid%20Scheduling%20Considering%20Solar%20and%20Load%20Forecasting,%20Battery%20Degradation,%20and%20Demand%20Response%20Dynamics&rft.jtitle=IEEE%20access&rft.au=Witharama,%20W.%20M.%20N.&rft.date=2024&rft.volume=12&rft.spage=83269&rft.epage=83284&rft.pages=83269-83284&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3412914&rft_dat=%3Cproquest_ieee_%3E3069620354%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069620354&rft_id=info:pmid/&rft_ieee_id=10553283&rfr_iscdi=true