Loading…
Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics
Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.83269-83284 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913 |
container_end_page | 83284 |
container_issue | |
container_start_page | 83269 |
container_title | IEEE access |
container_volume | 12 |
creator | Witharama, W. M. N. Bandara, K. M. D. P. Azeez, M. I. Bandara, Kasun Logeeshan, V. Wanigasekara, Chathura |
description | Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and varying grid electricity prices. This paper presents an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power generation and building load consumption. The approach aims to minimize operational costs and ensure microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs under Sri Lanka's current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive demand response management has the potential to minimize costs further. This research contributes to microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems. |
doi_str_mv | 10.1109/ACCESS.2024.3412914 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10553283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10553283</ieee_id><doaj_id>oai_doaj_org_article_4b1bd94e9d1e4d528c349b0b8bff153c</doaj_id><sourcerecordid>3069620354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913</originalsourceid><addsrcrecordid>eNpNUctqGzEUHUoLDUm-oF0Iuo0dvWYsLd1xXuASqJO10ONqIjMeudK44A_p_0bOhBJt7uXqnHMfp6q-ETwnBMvrZdvebDZziimfM06oJPxTdUZJI2esZs3nD_nX6jLnLS5PlFK9OKv-Ld1fPVhw6A4GGINFy76LKYwvO-RjQo_7Mex0j34Fm2KXgkMb-wLu0IehQ20ccnCQTvkm9johPTi0jtqh25jA6jyWryv0U48jpCNaQZe002OIw9UbdAW7U_gNeV-kAK2Og94Fmy-qL173GS7f43n1fHvz1N7P1o93D-1yPbNUyHGmfe0dXVCMDRcUN43wuLHGgGykYLbGWhrnmeCOekEcplQviGQeGk_BSMLOq4dJ10W9VftUVk1HFXVQb4WYOqVTOUoPihtinOQgHQHuaios49JgI4z3pGa2aP2YtPYp_jlAHtU2HtJQxlcMN7KhmNW8oNiEKufMOYH_35VgdbJTTXaqk53q3c7C-j6xAgB8YNQ1o4KxV7rGnV8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069620354</pqid></control><display><type>article</type><title>Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics</title><source>IEEE Xplore Open Access Journals</source><creator>Witharama, W. M. N. ; Bandara, K. M. D. P. ; Azeez, M. I. ; Bandara, Kasun ; Logeeshan, V. ; Wanigasekara, Chathura</creator><creatorcontrib>Witharama, W. M. N. ; Bandara, K. M. D. P. ; Azeez, M. I. ; Bandara, Kasun ; Logeeshan, V. ; Wanigasekara, Chathura</creatorcontrib><description>Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and varying grid electricity prices. This paper presents an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power generation and building load consumption. The approach aims to minimize operational costs and ensure microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs under Sri Lanka's current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive demand response management has the potential to minimize costs further. This research contributes to microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3412914</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; battery energy storage ; Cost function ; Costs ; Decision trees ; Degradation ; Demand response ; demand response strategies ; Distributed generation ; Electric power demand ; Electric power systems ; Electrical loads ; Electricity pricing ; Energy ; Energy costs ; Energy management ; Energy sources ; Energy storage ; genetic algorithm ; Genetic algorithms ; Machine learning ; Microgrid ; Microgrids ; Operating costs ; Optimal scheduling ; Optimization ; optimizing ; Power dispatch ; renewable energy ; Renewable energy sources ; Scheduling ; Solar panels ; Solar power generation ; sustainability</subject><ispartof>IEEE access, 2024, Vol.12, p.83269-83284</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913</cites><orcidid>0000-0003-4371-6108 ; 0000-0003-3767-8280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10553283$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Witharama, W. M. N.</creatorcontrib><creatorcontrib>Bandara, K. M. D. P.</creatorcontrib><creatorcontrib>Azeez, M. I.</creatorcontrib><creatorcontrib>Bandara, Kasun</creatorcontrib><creatorcontrib>Logeeshan, V.</creatorcontrib><creatorcontrib>Wanigasekara, Chathura</creatorcontrib><title>Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics</title><title>IEEE access</title><addtitle>Access</addtitle><description>Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and varying grid electricity prices. This paper presents an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power generation and building load consumption. The approach aims to minimize operational costs and ensure microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs under Sri Lanka's current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive demand response management has the potential to minimize costs further. This research contributes to microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems.</description><subject>Batteries</subject><subject>battery energy storage</subject><subject>Cost function</subject><subject>Costs</subject><subject>Decision trees</subject><subject>Degradation</subject><subject>Demand response</subject><subject>demand response strategies</subject><subject>Distributed generation</subject><subject>Electric power demand</subject><subject>Electric power systems</subject><subject>Electrical loads</subject><subject>Electricity pricing</subject><subject>Energy</subject><subject>Energy costs</subject><subject>Energy management</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Microgrid</subject><subject>Microgrids</subject><subject>Operating costs</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>optimizing</subject><subject>Power dispatch</subject><subject>renewable energy</subject><subject>Renewable energy sources</subject><subject>Scheduling</subject><subject>Solar panels</subject><subject>Solar power generation</subject><subject>sustainability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctqGzEUHUoLDUm-oF0Iuo0dvWYsLd1xXuASqJO10ONqIjMeudK44A_p_0bOhBJt7uXqnHMfp6q-ETwnBMvrZdvebDZziimfM06oJPxTdUZJI2esZs3nD_nX6jLnLS5PlFK9OKv-Ld1fPVhw6A4GGINFy76LKYwvO-RjQo_7Mex0j34Fm2KXgkMb-wLu0IehQ20ccnCQTvkm9johPTi0jtqh25jA6jyWryv0U48jpCNaQZe002OIw9UbdAW7U_gNeV-kAK2Og94Fmy-qL173GS7f43n1fHvz1N7P1o93D-1yPbNUyHGmfe0dXVCMDRcUN43wuLHGgGykYLbGWhrnmeCOekEcplQviGQeGk_BSMLOq4dJ10W9VftUVk1HFXVQb4WYOqVTOUoPihtinOQgHQHuaios49JgI4z3pGa2aP2YtPYp_jlAHtU2HtJQxlcMN7KhmNW8oNiEKufMOYH_35VgdbJTTXaqk53q3c7C-j6xAgB8YNQ1o4KxV7rGnV8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Witharama, W. M. N.</creator><creator>Bandara, K. M. D. P.</creator><creator>Azeez, M. I.</creator><creator>Bandara, Kasun</creator><creator>Logeeshan, V.</creator><creator>Wanigasekara, Chathura</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4371-6108</orcidid><orcidid>https://orcid.org/0000-0003-3767-8280</orcidid></search><sort><creationdate>2024</creationdate><title>Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics</title><author>Witharama, W. M. N. ; Bandara, K. M. D. P. ; Azeez, M. I. ; Bandara, Kasun ; Logeeshan, V. ; Wanigasekara, Chathura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>battery energy storage</topic><topic>Cost function</topic><topic>Costs</topic><topic>Decision trees</topic><topic>Degradation</topic><topic>Demand response</topic><topic>demand response strategies</topic><topic>Distributed generation</topic><topic>Electric power demand</topic><topic>Electric power systems</topic><topic>Electrical loads</topic><topic>Electricity pricing</topic><topic>Energy</topic><topic>Energy costs</topic><topic>Energy management</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Microgrid</topic><topic>Microgrids</topic><topic>Operating costs</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>optimizing</topic><topic>Power dispatch</topic><topic>renewable energy</topic><topic>Renewable energy sources</topic><topic>Scheduling</topic><topic>Solar panels</topic><topic>Solar power generation</topic><topic>sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witharama, W. M. N.</creatorcontrib><creatorcontrib>Bandara, K. M. D. P.</creatorcontrib><creatorcontrib>Azeez, M. I.</creatorcontrib><creatorcontrib>Bandara, Kasun</creatorcontrib><creatorcontrib>Logeeshan, V.</creatorcontrib><creatorcontrib>Wanigasekara, Chathura</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witharama, W. M. N.</au><au>Bandara, K. M. D. P.</au><au>Azeez, M. I.</au><au>Bandara, Kasun</au><au>Logeeshan, V.</au><au>Wanigasekara, Chathura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>83269</spage><epage>83284</epage><pages>83269-83284</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Microgrids driven by distributed energy resources are gaining prominence as decentralized power systems offering advantages in energy sustainability and resilience. However, optimizing microgrid operation faces challenges from the intermittent nature of renewable sources, dynamic energy demand, and varying grid electricity prices. This paper presents an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid with a solar panel and a battery energy storage system. Genetic Algorithm generates demand response strategies and optimizes battery dispatch, while LightGBM forecasts solar power generation and building load consumption. The approach aims to minimize operational costs and ensure microgrid sustainability, using a battery degradation cost function to extend its lifespan. Simulation results conducted in the University of Moratuwa microgrid show a significant 14.22% decrease in electricity costs under Sri Lanka's current tariff structure, attributed to intelligent energy dispatch scheduling. Proactive demand response management has the potential to minimize costs further. This research contributes to microgrid optimization knowledge, promoting the adoption of intelligent and sustainable energy systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3412914</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4371-6108</orcidid><orcidid>https://orcid.org/0000-0003-3767-8280</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.83269-83284 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10553283 |
source | IEEE Xplore Open Access Journals |
subjects | Batteries battery energy storage Cost function Costs Decision trees Degradation Demand response demand response strategies Distributed generation Electric power demand Electric power systems Electrical loads Electricity pricing Energy Energy costs Energy management Energy sources Energy storage genetic algorithm Genetic algorithms Machine learning Microgrid Microgrids Operating costs Optimal scheduling Optimization optimizing Power dispatch renewable energy Renewable energy sources Scheduling Solar panels Solar power generation sustainability |
title | Advanced Genetic Algorithm for Optimal Microgrid Scheduling Considering Solar and Load Forecasting, Battery Degradation, and Demand Response Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Genetic%20Algorithm%20for%20Optimal%20Microgrid%20Scheduling%20Considering%20Solar%20and%20Load%20Forecasting,%20Battery%20Degradation,%20and%20Demand%20Response%20Dynamics&rft.jtitle=IEEE%20access&rft.au=Witharama,%20W.%20M.%20N.&rft.date=2024&rft.volume=12&rft.spage=83269&rft.epage=83284&rft.pages=83269-83284&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3412914&rft_dat=%3Cproquest_ieee_%3E3069620354%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-af5fd27200b4820668f06cbbe96983c50a9bdf384d2f81d022a7193fe6f2eb913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069620354&rft_id=info:pmid/&rft_ieee_id=10553283&rfr_iscdi=true |